1y
mmmm SCONS

Build your software, better.

SCons4.6.0

User Guide

The SCons Development Team

Version 4.6.0
Copyright © 2004 - 2023 The SCons Foundation
Publication date Released: Mon, 21 Mar 2023 12:25:39 -0400

Table of Contents

(= =0 ST PT T OPPTTR iX
L. SCONS PIINCIPIES ettt et e et e et b e et e b e e et e e e nb s iX

2. HOW t0 USE ThiS GUITEeuiiiiiiiii ettt ettt e et et e e e ne s iX

3. A Caveat About This GUIJE'S COMPIELENESSciiiiiieiiii et e s X

4. ACKNOWIBAGEMENTS ...ttt ettt e et ettt e et et e et e e e e e enb e e eeaaas X
SO0 4 | - o APPSR X

1. Building and INStAlliNg SCONSuuiiiiii ettt e et e e et eeana s 1
L1 INSAliNG PYNON ..ot 1

1.2, INSEATING SCOMNS ...ttt ettt e et e ettt e et e e e et e e b et e e e e eneas 2

1.3. Using SCons Without INSEaIlINGc..uniiiiiieiiii e 3

1.4. Running Multiple Versions of SCoNns Side-by-Sideoviiiiiiiiiiiiii e 3

2. SIMPIE BUIIAS ...ttt e et e et e et e s 5
2.1. Building SImple C / CH+ PrOgramS.cccuuuiiiiiiieeeiii ettt ettt e e et e e e et eeena e aees 5

2.2. BUIldiNG OBJECE FIIES ..ottt e ee e eees 6

2.3. SIMPIE JAVA BUILAS ..ot e et 7

2.4, Cleaning Up ATLEr @ BUITOooouuiiiiii et e e e eaeens 7

25. The SCONST T UCT Fle e ettt 8
25.1. SConst ruct Files Are Python SCripESccuuiiiiiiiiiiiiii e 8

2.5.2. SCons Builders Are Order-INdependentcooouuiiieiiiiieieii e 9

2.6. Making the SCons Output Less VErDOSEuiiiiiiiiii e 9

3. Less Simple Things to DO With BUITAScooiiiiiiiiii e 11
3.1. Specifying the Name of the Target (OULPUL) Fileuiiiiiiii e 11

3.2. Compiling MUItIple SOUICE FlESuiiiiii e e 12

3.3. Making alist of fileSWith G 0D ... e 12

3.4. Specifying Single Files VS, LiStS Of FIlESiiiiiiiiiii e 13

3.5. Making Lists Of Files EaSier 10 REAcouuiiiiiiiiieiiiii ettt 14

3.6, KEYWOIA ATQUIMIENTS .oettieiiiti ettt e et e ettt e e et e e ettt e e et et e e et et e e e e et e e e e ebaeas 14

3.7. Compiling MUIIPIE PrOgraMScouuuiiiiiie ettt et e e e e e 15

3.8. Sharing Source Files Between MUltiple Programsoiceeiiiiieiiiiiiee e 15

4. Building and Linking With LIDIariEeScooeuiiiiiiiii e e e e e e eeees 17
A1, BUIlAING LIBrariES ...t 17
4.1.1. Building Libraries From Source Code or Object FIlesccooiiiiiiiiiiiiiiii e 18

4.1.2. Building Static Libraries Explicitly: the St at i cLi brary Builderccc.ooovviiiiiiinnnnen. 18

4.1.3. Building Shared (DLL) Libraries: the Shar edLi brary Buildercccooiviiiiiiiiiiinnnnnn. 18

4.2, LinKing WIth LIDIariESeiiiiii ettt eenees 19

4.3. Finding Libraries: the $L1 BPATH Construction Variablecccooiiiiiiiiiiiiiineeceeeiii e 20

I N oo (S @ 1= ot £ SO T U PPTRPPPPT 21
5.1. Builder Methods Return Lists of Target NOUESociiiiiiiiiiiiiiiciiii e 21

5.2. Explicitly Creating File and Directory NOUESccoeuuiiiiiiiiieiiiii e 22

5.3. Printing NOA@ File NBMESottt e e e e e e enaes 22

5.4. Using a Node's File NamMe 8S @ SINGcccvuuiiiiiiiaiiii ettt 23

5.5. Get Bui | dPat h: Getting the Path From aNode or SINgcc.vuvieiiiiiiiiiiiiee e 23

B. DEPENUENCIES ... iieitie ettt ettt ettt ettt ettt ettt e e e e e 25
6.1. Deciding When an Input File Has Changed: the Deci der FUNCtONc.ocoeviiiieiiiiinieiiiiineeeens 25
6.1.1. Using Content Signatures to Decide if aFile Has Changedcccooovviiiiiiniiiiiiiniccee, 26

6.1.2. Using Time Stamps to Decide If aFile Has Changedcoovveiiiiiiieiiiiiic e 27

6.1.3. Deciding If aFile Has Changed Using Both MD Signatures and Time Stampsc......... 28

6.1.4. Extending SCons: Writing Y our Own Custom Deci der Functioncccooviiveiinnennnn. 28

6.1.5. Mixing Different Ways of Deciding If aFile Has Changedccccooiviiiiiiiiiiiiinienennnn. 30

6.2. Implicit Dependencies. The $CPPPATH Construction Variable ..., 31

6.3. Caching IMPliCit DEPENAENCIESeiiiti ittt ettt ettt e e et e et e e e e nb e e e eebnaeeeens 32

~

'—‘—' SCONS iii

6.3.1. The--inplicit-deps-changed Optionc.ccooiiiiiiiiiiiiiii e 33

6.3.2. The--inplicit-deps-unchanged Optionccccceiiiiiiiiiiiiieii e 33
6.4. Explicit Dependencies: the Depends FUNCHONcooiiiiiiiiiii i e 33
6.5. Dependencies From External Files: the Par seDepends FUNCLiONcccccciviiiiiiiiiieiiineciieenen, 34
6.6. Ignoring Dependencies: the | gnor e FUNCHIONcoouiiiiiiiiiic e 35
6.7. Order-Only Dependencies; the Requi r €S FUNCIONccoooviiiiiiiiiiiccie e 36
6.8. The Al WaySBUI | d FUNCHIONiiieiiiici e e e e e e e e e e 38
A =071 (0000101 PP 40
7.1. Using Values From the External ENVIFONMENTccouiiiiiiiiiiieiie e e e e e 41
7.2. CONSIIUCHION ENVIFONMENESutiiiiiiiieeiiiii et e e e et e et e e et e e et s e e e et e e e e et e e e e ern s 42
7.2.1. Creating a Construction Environment: the Envi r onment Functionccooceeieeine. 42
7.2.2. Fetching Vaues From a Construction EnVironmentccocoieeiiiiiiiniiii e 42
7.2.3. Expanding Values From a Construction Environment: the subst Method 44
7.2.4. Handling Problems With Value EXPanSiONccceuuieiiiiiiiiiieii e e e e e e e 44
7.2.5. Controlling the Default Construction Environment: the Def aul t Envi r onment Function
... 45
7.2.6. Multiple Construction ENVIFONMENEScivuieiiiiiiii e e eeeeee et e et e e e e e e e aane e 46
7.2.7. Making Copies of Construction Environments: the Cl one Methodccoeeiiieninnils 47
7.2.8. Replacing Values: the Repl ace Methodcooooviiiiiiiii e, 48
7.2.9. Setting Values Only If They're Not Already Defined: the Set Def aul t Method 49
7.2.10. Appending to the End of Values: the Append Methodcccoooiiiiiiiiiiniiis 49
7.2.11. Appending Unique Values. the AppendUni que Methodcooveiiiiiiiin e, 50
7.2.12. Prepending to the Beginning of Values: the Pr epend Methodcoooeiiiiiiiienennnn, 50
7.2.13. Prepending Unique Values. the Pr ependUni que Methodcoocoiiiiiiiiiiincieeennn, 51
7.2.14. Overriding Construction Variable SEttiNgScoovviiiiiiiiiiicii e 51
7.3. Controlling the Execution Environment for Issued Commandscccoeeeiiieiiiiiiiiiecinieee e 52
7.3.1. Propagating PATH From the External ENVIironmentccocoiiiiiiiiiiiiieiin e 53
7.3.2. Adding to PATH Values in the Execution EnNVIronmentccoovvviiieiiiieeiin e, 54
7.4. Using the toolpath for external TOOISc..oiiiiiiiiiii e e e 54
7.4.1. The default tool Search Pathccoveiiiii e 54
7.4.2. Providing an external directory to toolpathccooooiiiiiiiiiii 54
7.4.3. Nested Tools within atoolpathcooiiiiiii e 55
7.4.4. Using sys.path within the toolpath ..o, 55
7.4.5. Using the PyPackageDi r function to add to thetoolpathcccoooviiiiiiiin . 56
8. Automatically Putting Command-line Options into their Construction Variablescccccccoevviiiiiinennnnn. 57
8.1. Merging Options into the Environment: the Mer geFl ags Functioncccoooviiiiiiiiinennens 57
8.2. Merging Options While Creating Environment: the par se_f | ags Parameterco.cceveeennnnns 58
8.3. Separating Compile Arguments into their Variables: the Par seFl ags Functionccc.ccov.ii. 59
8.4. Finding Installed Library Information: the Par seConfi g Functioncc.occoeveiiiiiiniiinnecennn. 60
9. Controlling BUIlA OULPULiiiiiiii e e e e e e e e r e e e et e et e e et e e et s e e st e e aan e e st e eeaneeannaees 62
9.1. Providing Build Help: the Hel p FUNCLIONoouiiiiii e 62
9.2. Controlling How SCons Prints Build Commands: the $* COVSTR Variablescccceevviiiiiinnnnns 63
9.3. Providing Build Progress Output: the Pr ogr €Ss FUNCLIONccoviiiiiiiiiiiiiiii e 65
9.4. Printing Detailed Build Status: the Get Bui | dFai | ures FUnctioncccooooiveiiieiiiieiineeennnn, 67
10. Controlling a Build From the Command LiNEccooiuiiiiiiiiii e e e 69
10.1. Command-Ling OPLIONSuuiiiiuiiiiiieiiie e e et et e et e e e e e e e et e e e e et e e et e e et e e et e e eeanaeeen 69
10.1.1. Not Having to Specify Command-Line Options Each Time: the SCONSFLAGS
Environment Varialeooooiiiiiiiii e 69
10.1.2. Getting Values Set by Command-Line Options: the Get Qpt i on Function 70
10.1.3. Setting Values of Command-Line Options: the Set OQpt i on Functionccceeeevnnnnes 71
10.1.4. Strings for Getting or Setting Values of SCons Command-Line Optionsccccecevvveeee. 72
10.1.5. Adding Custom Command-Line Options. the AddQOpt i on Functionccccceeiieennnne. 73
10.2. Command-Line vari abl e=val ue Build Variablesccccooviiiiiiiiiiiiiiii e, 74
10.2.1. Controlling Command-Line Build Variablescccoooiiiiiiiiii e, 75

Iy
=== SCONS iv

10.2.2. Providing Help for Command-Line Build Variablesc..ccooiiiiiiiiiii s 76

10.2.3. Reading Build Variables From a Fileccoiiiiiiiiiiiii e 77
10.2.4. Pre-Defined Build Variable FUNCHIONSocuuiiiiiiiiiiciis e 77
10.2.5. Adding Multiple Command-Line Build Variablesat ONnceccoevviviiiiiiiiiiiciiineeieeenn, 84

10.2.6. Handling Unknown Command-Line Build Variables: the UnknownVar i abl es Function
... 85
10.3. ComMMANG-LiNg TaIGEIS .ovuuiiiiieiiieii e et e e e e e e e e e e e e e e e et e e et e et s e e et e e anneeeanns 86
10.3.1. Fetching Command-Line Targets: the COVMAND LI NE_TARGETS Variable 86
10.3.2. Controlling the Default Targets: the Def aul t FUNCLIONccocovvviiiiiiiiiiei e, 86

10.3.3. Fetching the List of Build Targets, Regardless of Origin: the BUl LD _TARGETS Variable

... 89
11. Installing Files in Other Directories: the l nst al | BUIldercccooeiiiiiiiiiiii e 91
11.1. Installing Multiple FIleS N @ DIFECIOIYuiiiiniiiiiieeiii et e e e e e e e aeaas 92
11.2. Installing a File Under a DIifferent NaMEiiiiiiiiiiiiiii e e e e e e 92
11.3. Installing Multiple Files Under Different NameSc..ooviiiiiiiiiiii e 93
11.4. Installing @ Shared Libraryco.ooiiiiiiiiiii e e e e e e e e e e e aenas 93
12. Platform-Independent File System Manipulationc.cooiiiiiiiiiiiiiiec e e e 94
12.1. Copying Files or Directories: The COPY FaCLOrYccooiiiiiiiiiiiiciie e 94
12.2. Deleting Files or Directories: The Del €t € FaCtOrycouuviiiiiiiii e 95
12.3. Moving (Renaming) Files or Directories: The Move Factoryccooveviiiiiiiiiiiiiiin e, 96
12.4. Updating the Modification Time of a File: The Touch FaCtoryccooevviiiiiiiiiiiinccieeeeeeen, 97
12.5. Creating a Directory: The MKdi I FaCtOryieiiiiiiii i e e e e 97
12.6. Changing File or Directory Permissions. The Chnod Factoryccooevviiiiiiiiiiiiccii e, 98
12.7. Executing an action immediately: the Execut @ FUNCLIONcccvviiiiiiiiiciii e, 98
13. Controlling REMOVEl Of TAIGELScvuiiiiieiii i e e e e e e e e e et e et e e e e e eanaas 100
13.1. Preventing target removal during build: the Pr eci ous FUNCLiONcccooeviiiiiiniiineciieecis 100
13.2. Preventing target removal during clean: the NoCl ean FUNCtionccooovviiiiiiniiiiiecneeeennn, 100
13.3. Removing additional files during clean: the Cl ean FUNCLiONccooeviiiiiiiieiiii e, 101
14, HierarchiCal BUILASvuiiiiiiii e e e e e e e e et e e e e et e e e e et s 102
I S0] F=Y o T o) = S 102
14.2. Path Names Are Relative to the SCoNSCri pt DIreCtOryocevviiiiiiieiiieeii e, 103
14.3. Top-Relative Path Names in Subsidiary SConscri pt Flesccooiiiiiiiiiiie e 104
14.4. ADSOIULE Path NBIMES ...t e et e e e et e e e eaa s 104
14.5. Sharing Environments (and Other Variables) Between SConscri pt Filescooooiiiiiiiinnnnnnn. 105
14.5.1. EXPorting VariablESiiieiiii e 105
14.5.2. Importing VariablESiiiiiii e 106
14.5.3. Returning Values From an SConscri pt File ..o 107
15. Separating Source and Build Trees: Variant DIr€CIONESiiviiiiiiiiiiiiieiie e e e 109
15.1. Specifying a Variant Directory Tree as Part of an SConscri pt Calc.ccooveviiiiiiiiiininns 110
15.2. Why SCons Duplicates Source Filesin a Variant Directory Treeovevviveiiiieiiiieiiiiieiiieeeiieens 111
15.3. Telling SCons to Not Duplicate Source Filesin the Variant Directory Treeccoocevvveviieeennnn. 111
15.4. The Vari ant Di 1 FUNCHION ...ooouuiiii et e et e e e 112
15.5. Using Vari ant Di r Withan SConscript Fileooocoiiiiiiiii e, 113
15.6. Using A 0b With Vari @ant Di I ...oouiiii e e e e e eaeas 113
15.7. Variant BUild EXGMPIES ...covuiiiici e e 114
16. Building From Code REPOSITOMNEScuuiiiiieiiieiiii e e e e e e e e e e e e e e e et e e et e e et e e st e e st e eaaeaannaees 116
16.1. The RepoSi t Ory MENOOcovviiiiiii e e e e aaaas 116
16.2. Finding source fileS in FEPOSITONESuuiiiiiiiii e e e e e e e e e e e e aanaees 116
16.3. Finding #i ncl ude fileSin rePOSITONIEScivviiiii e 117
16.3.1. Limitations on #i ncl ude filesin repoSitorieSc.ooveviiiiiiiiiiiii e 118
16.4. Finding the SConst ruct file in repOSItONEScccvvniiiiiiiii e 119
16.5. Finding derived fileS iN FEPOSITONESivvuiiiiiii e e e e e aeaas 119
16.6. Guaranteeing local COpIES Of fIlES ...iuuiiii i e 120
17. Extending SCons: Writing Your OWN BUIIAErScooiiniiiiiiiii e 121

Iy
=== SCONS v

18.
19.
20.

21.

22.

23.
24.

25.

26.

27.

17.1. Writing Builders That Execute External CoOmMmMandsScoevviiiiiiieiiiieiiiieeiin e e e e 121

17.2. Attaching a Builder to a Construction ENVIFONMENTcocuiiiiiiiiiiiieiiieeci e ee e e e 121
17.3. Letting SCons Handle The File SUFfIXESuiiiiiiiiii e 122
17.4. Builders That Execute Python FUNCLONSoiiiiiiiiiiiciie e e s 123
17.5. Builders That Create Actions USING @ GENEIAIONcevvuieiinieiiiieiiiieeeee e e e e e e e e e eanas 124
17.6. Builders That Modify the Target or Source Lists Using an Emitterc.occoeveiiiiiiniiiiieeennnns 125
17.7. Modifying a Builder by adding an EMIttercooiiiiiiiiiiicii e 126
17.8. Where To Put Your Custom Builders and TOOISccoeuuiiiiiiiiiiiiiiiin e 127
Not Writing a Builder: the Command BUIlAErccoouiiiiiiiiii e e 129
Extending SCons: Pseudo-Builders and the AddMethod functioncccooeeiiiiiiiiiinin e, 131
Extending SCons; Writing YOur OWN SCANNELSciuuuiiiiiieeiieeiieei e esieesteestee st seeanaesateeeaneaennaes 133
20.1. A SImple SCanner EXAMPIEcoouiii i 133
20.2. Adding a search path to a Scanner: Fi ndPat hDi 'Sooiiiiiiiiiic e 134
20.3. Using scanners With BUIIAEIScoouniiiiiiiii e e e e e 135
Multi-Platform Configuration (Autoconf FUNCLIONEIITY)ocovniiiniiiiici e 136
b2 I IR O 1 o 0 =3 @)1=t (=S 136
21.2. Checking for the Existence of Header Fil€Suviiiiiiiiiiiii e, 137
21.3. Checking for the Availability of @ FUNCLIONc.oiiiiiiii e 137
21.4. Checking for the Availability of aLibrarycooooiiiiiiiiii 138
21.5. Checking for the Availability of at ypedef ... 138
21.6. Checking the SIZe Of @ dalalyPecvvvuiiiiieii i e e e aeas 139
21.7. Checking for the Presence of @ programiceue e e e e e e e e e eanas 139
21.8. Extending SCons: Adding Y our Own Custom Checksccooeiiiiiiiiiiiiiiii e, 139
21.9. Not Configuring When Cleaning TargelSccuuviiiiiiiiieiiii e e e e e e e e e e eaaaas 141
(0= o o 1 oo I S 011 = 142
22.1. Specifying the Derived-File Cache DIreClOrycooiiiiiiiiiiiiei e e 142
22.2. Keeping Build OULPUL CONSISEENTcoviiiiiicii e e e e e e e e e e e e et e e eaeeaens 143
22.3. Not Using the Derived-File Cache for SpecifiC FileScooviiiiiiiii e 143
22.4. Disabling the Derived-File Catheco.iiiiiiiii e 144
22.5. Populating a Derived-File Cache With Already-BUilt FIl€Scoooviiiiiiiiii e 144
22.6. Minimizing Cache Contention: the - - r andomOPLIONoviiiiiiiiiieii e 145
22.7. Using a Custom CaCheDir ClasScccuuiiiiiiiiiiieiiii e et e e e e e e e e e e e e et e et e e e e aanaees 146
y Y = S = = £ 147
= (V7= = 11 T o PR 149
24.1. Building Java Class Files: the Java BUIldErcooviiiiiiiiii e 149
24.2. How SCons Handles Java DEPENTENCIESuiiiiiiiiiiiiiiii e e e e e e e e e e 149
24.3. Building Java Archive (. j ar) Files: the Jar Buildercccooiviiiiiiiiiiiii e, 150
24.4. Building C Header and Stub Files: the JavaHBuUIlderccoooiiiiiiiiini e, 151
24.5. Building RMI Stub and Skeleton Class Files: the RM CBuUildercocoooviiiiiiiiiiiiiinieeeis 152
Internationalization and localization With gELEEXEoiviiiiiii i 153
T T 1= = o 0T (= P 153
IS 4] o L o] ()= AP 153
MiSCEIlaNEOUS FUNCHIONAIITYuuiiiii i e e e e e e et e e e e e e e et e e eaneeeaaaas 159
26.1. Verifying the Python Version: the Ensur ePyt honVer si on Functioncccoocviivieien. 159
26.2. Verifying the SCons Version: the Ensur eSConsVer si on Functionccooeeviviiiieiinnennnn. 159
26.3. Explicitly Terminating SCons While Reading SConscr i pt Files: the Exi t Function 160
26.4. Searching for Files: the Fi ndFi | @ FUNCLONcccoviiiiiiiii e 160
26.5. Handling Nested Lists: the Fl at t en FUNCHIONcooviiiiiiiiiii e, 162
26.6. Finding the Invocation Directory: the Get LaunchDi r FUNCtioncccooeviiiiiiiiieiiinceinnen, 163
26.7. Declaring Additional Outputs: the Si deEf f ect Functionccooooiiiiiiiiiiiiie e, 164
26.8. Virtual environments (VIFUGIENVS)ciiuniiiiiiiii e e e e e e e e e e et e e e e e e aenas 166
Using SCons with other build tO0ISiiiiiiiii e 167
27.1. Creating a Compilation Datalaseoeiviiiiiiiieii e e 167
A7 N[o =W =10 1 (o I = 0 T= = o G PP 169

Iy
=== SCONS vi

22 T I (010 o] == aTo o) oo 171

28.1. Why is That Target Being Rebuilt? the - - debug=expl ai n Optionccoooeviiiiiiiiiiiieeinns 171
28.2. What's in That Construction Environment? the Dunp Methodcocooiiiiiiiiiii e, 173
28.3. What Dependencies Does SCons Know About?the--tree Optionc.cccoviviiiiiiiieiiineiinenns 178
28.4. How is SCons Constructing the Command Lines It Executes? the - - debug=pr esub Option 184
28.5. Where is SCons Searching for Libraries? the - - debug=fi ndl i bs Optioncc.ccoen. 184
28.6. Where is SCons Blowing Up? the - - debug=st ackt race Optioncccocecieeviiieiiiiiennnnnnns 185
28.7. How is SCons Making Its Decisions? the - - t askmast ertrace Optioncccccoeveviieennnnnn. 185
28.8. Watch SCons prepare targets for building: the - - debug=pr epar e Optionc..ceevevinns 187
28.9. Why is afile disappearing? the - - debug=dupl i cat e Optionccooveiiiiiiiiiiiiceeeenn, 187
28.10. KEED It SIMPIE oot 187
A. CONSITUCHION VaBDIES ...t et e e et e e ettt e e e e et reeeettaeeeeranaeaeees 189
2 ST (= PSP 264
3 1o S PPRPPIN: 294
D. Functions and ENvironment MEthOOSoiiiiiiiiiiiiii e e e 310
[o =g To [T o R @0 T) N I S T PP 349

Iy
=== SCONS vii

List of Examples

E.1. Wildcard globbing to create alist Of fIilenamesoooiiiiiiiiii e 349
E.2. Filename extension SUBSHITULIONiiiiiiiiiii et e 349
E.3. Appending a path prefix to alist of filleNamMEScooouuiiiiiii e 349
E.4. Substituting a path prefix with another 0Ne ... 349
E.5. Filtering a filename list to exclude/retain only a specific set of eXtensionsccceeiveveiiiieiiiiiiieeennnn, 349
E.6. The "backtick function": run a shell command and capture the QULPULccooviiiiiiiiiiieiiiiiieeeiiieees 349
E.7. Generating source code: how code can be generated and used by SCoNScoovviiiiiiiiiiiiiien, 350
~

'—‘—' SCONS viii

SCons Principles

Preface

Thank you for taking the time to read about SCons. SCons is a modern software construction too - a software utility
for building software (or other files) and keeping built software up-to-date whenever the underlying input files change.

The most distinctive thing about SCons is that its configuration files are actually scripts, written in the Python
programming language. Thisisin contrast to most alternative build tools, which typically invent a new language to
configure the build. SCons still has a learning curve, of course, because you have to know what functions to call to
set up your build properly, but the underlying syntax used should be familiar to anyone who has ever looked at a
Python script.

Paradoxically, using Python as the configuration file format makes SCons easier for non-programmers to learn than
the cryptic languages of other build tools, which are usually invented by programmers for other programmers. Thisis
in no small part due to the consistency and readability that are hallmarks of Python. It just so happens that making a
real, live scripting language the basis for the configuration files makes it a snap for more accomplished programmers
to do more complicated things with builds, as necessary.

1. SCons Principles

There are afew overriding principles the SCons team tries to follow in the design and implementation.

Correctness
First and foremost, by default, SCons guarantees a correct build even if it means sacrificing performance alittle.
We strive to guarantee the build is correct regardless of how the software being built is structured, how it may
have been written, or how unusual the tools are that build it.

Performance
Given that the build is correct, we try to make SCons build software as quickly as possible. In particular, wherever
we may have needed to slow down the default SCons behavior to guarantee a correct build, we also try to make
it easy to speed up SCons through optimization options that let you trade off guaranteed correctness in all end
cases for a speedier build in the usual cases.

Convenience
SConstriesto do as much for you out of the box as reasonable, including detecting the right tools on your system
and using them correctly to build the software.

In anutshell, we try hard to make SCons just "do the right thing" and build software correctly, with a minimum of
hassles.

2. How to Use this Guide

This guide intends to coach you how to use SCons effectively and efficiently, by providing a range of examples and
usage scenarios. Assuch it is not exactly atutorial (as usually those build a single example topic from start to finish),
but if you are just starting with SConsit is recommended you step through thefirst 10 chaptersin sequence as thiswill
giveasolid grounding in the principles of working with SCons. If you follow that trail, you can feel freetoinitially skip
sections on extending SCons, such as Writing your own Decider Function, and come back to those if the need arises.

The remaining chapters cover more advanced topics that not all build systems will need, and can be used in more of
asingle-topic way, to read if you find you need that particular information.

It is often useful to keep SCons man page open in a separate browser tab or window to refer to as a complement to this
Guide, as the User Guide does not attempt to provide every detail. While this Guide's Appendices A-D do duplicate

Iy
=== SCONS iX

A Caveat About This Guide's Compl eteness

information that appearsin the man page (thisisto allow intra-document links to definitions of construction variables,
builders, tools and environment methods to work), the rest of the man page is unique content.

3. A Caveat About This Guide's Completeness

SCons is a volunteer-run open source project. As such, the SCons documentation isn't dways completely up-to-date
with al the available features - somehow it's almost harder to write high quality, easy to use documentation than it
is to implement a feature in software. In other words, there may be alot that SCons can do that isn't yet covered in
this User's Guide.

Although this User's Guide may not be as complete as it could be, the development process does emphasize making
surethat the SCons man pageiskept up-to-date with new features. So if you'retrying to figure out how to do something
that SCons supports but can't find enough (or any) information here, it would be worth your while to look at the man
pageto seeif theinformation is covered there. And if you do, maybe you'd even consider contributing a section to the
User's Guide so the next person looking for that information won't have to go through the same thing...?

4. Acknowledgements

SCons would not exist without a lot of help from alot of people, many of whom may not even be aware that they
helped or served as inspiration. So in no particular order, and at the risk of leaving out someone:

First and foremost, SCons owes a tremendous debt to Bob Sidebotham, the original author of the classic Perl-based
Constool which Bob first rel eased to the world back around 1996. Bob'swork on Cons classic provided the underlying
architecture and model of specifying a build configuration using areal scripting language. My real-world experience
working on Cons informed many of the design decisions in SCons, including the improved parallel build support,
making Builder objects easily definable by users, and separating the build engine from the wrapping interface.

Greg Wilson was instrumental in getting SCons started as a real project when he initiated the Software Carpentry
design competition in February 2000. Without that nudge, marrying the advantages of the Cons classic architecture
with the readability of Python might have just stayed no more than a nice idea.

The entire SCons team have been absolutely wonderful to work with, and SCons would be nowhere near as useful a
tool without the energy, enthusiasm and time peopl e have contributed over the past few years. The"coreteam” of Chad
Austin, Anthony Roach, Bill Deegan, Charles Crain, Steve Leblanc, Greg Noel, Gary Oberbrunner, Greg Spencer and
Christoph Wiedemann have been great about reviewing my (and other) changes and catching problems before they
get in the code base. Of particular technical note: Anthony's outstanding and innovative work on the tasking engine
has given SCons avastly superior parallel build model; Charles has been the master of the crucial Node infrastructure;
Christoph'swork on the Configureinfrastructure has added crucial Autoconf-like functionality; and Greg has provided
excellent support for Microsoft Visual Studio.

Specia thanks to David Snopek for contributing his underlying "Autoscons' code that formed the basis of Christoph's
work with the Configure functionality. David was extremely generous in making this code available to SCons, given
that heinitially released it under the GPL and SConsis released under aless-restrictive MIT-style license.

Thanks to Peter Miller for his splendid change management system, Aegis, which has provided the SCons project
with arobust development methodology from day one, and which showed me how you could integrate incremental
regression tests into a practical development cycle (years before eXtreme Programming arrived on the scene).

And last, thanks to Guido van Rossum for his elegant scripting language, which is the basis not only for the SCons
implementation, but for the interface itself.

5. Contact

The best way to contact people involved with SCons, is through the SCons mailing lists.

Iy
=== SCONS X

Contact

If you want to ask general questions about how to use SCons send email to <scons- user s@cons. or g>.
If you want to contact the SCons development community directly, send email to <scons- dev@cons. or g>.

For quicker, informal questions, discussion, etc. the project operated a Discord server at https://discord.gg/bXVpWAyY
and aLibera.chat IRC channel at https://web.libera.chat/#scons (the former channel at irc.freenode.net isnow unused).
Certain discussions may also be moved by administrators from mailing list or chat to GitHub Discussions [https:/
github.com/SCons/scons/discussions] for greater permanence and easier finding.

Iy
=== SCONS Xi

https://discord.gg/bXVpWAy
https://web.libera.chat/#scons
https://github.com/SCons/scons/discussions
https://github.com/SCons/scons/discussions
https://github.com/SCons/scons/discussions

1 Building and Installing
SCons

This chapter will take you through the basic steps of installing SCons so you can use it for your projects. Before that,
however, this chapter will also describe the basic steps involved in installing Python on your system, in case that is
necessary. Fortunately, both SCons and Python are easy to install on ailmost any system, and Python already comes
installed on many systems.

1.1. Installing Python

Because SCons is written in the Python programming language, you need to have a Python interpreter available on
your system to use SCons. Before you try to install Python, check to seeif Python is already available on your system
by typing pyt hon -V (capital V') or pyt hon --versi on at your system's command-line prompt. For Linux/
Unix/MacOS/BSD type systems this looks like:

$ python -V
Pyt hon 3.9. 15

If you get aversion like 2.7.x, you may need to try using the name python3 - current SCons no longer works with
Python 2.

Note to Windows users: there are a number of different ways Python can be installed or invoked on Windows, it is
beyond the scope of this guide to unravel all of them. Some have an additional program called the Python launcher
(described, somewhat technically, in PEP 397 [https://www.python.org/dev/peps/pep-0397/]): try using the command
name py instead of python, if that is not available drop back to trying python

C\>py -V
Pyt hon 3.9. 15

If Python is not installed on your system, or is not findable in the current search path, you will see an error message
stating something like" conmmand not found" (on UNIX or Linux) or "' pyt hon' is not recognized
as an internal or external conmand, operable progam or batch file" (onWindows
cmd). In that case, you need to either install Python or fix the search path before you can install SCons.

https://www.python.org/dev/peps/pep-0397/
https://www.python.org/dev/peps/pep-0397/

Installing SCons

The link for downloading Python installers (Windows and Mac) from the project's own website is. https://
www.python.org/download. There are useful system-specific entries on setup and usage to be found at: https./
docs.python.org/3/using

For Linux systems, Python is almost certainly available as a supported package, probably installed by default; thisis
often preferred over installing by other means as the system package will be built with carefully chosen optimizations,
and will be kept up to date with bug fixes and security patches. Infact, the Python project itself doesnot build installers
for Linux for thisreason. Many such systems have separate packagesfor Python 2 and Python 3 - make sure the Python
3 packageisinstalled, as the latest SCons requires it. Building from source may still be a useful option if you need a
specific version that is not offered by the distribution you are using.

Recent versions of the Mac no longer come with Python pre-installed; older versions came with a rather out of date
version (based on Python 2.7) which is insufficient to run current SCons. The python.org installer can be used on the
Mac, but there are aso other sources such as MacPorts and Homebrew. The Anaconda installation also comes with
abundled Python.

Windows has even more choices. The Python.org installer isatraditional . exe style; the same softwareisalso released
as a Windows application through the Microsoft Store. Several alternative builds also exist such as Chocolatey and
ActiveState, and, again, aversion of Python comes with Anaconda.

SCons will work with Python 3.6 or later. If you need to install Python and have a choice, we recommend using the
most recent Python version available. Newer Python versions have significant improvements that help speed up the
performance of SCons.

1.2. Installing SCons

The recommended way to install SCons is from the Python Package Index (PyPI [https:.//pypi.org/project/SCons/]):
% python -mpip install scons

If you prefer not to install to the Python system location, or do not have privilegesto do so, you can add aflag toinstall
to alocation specific to your own account and Python version:

% python -mpip install --user scons

For those users using Anaconda or Miniconda, use the conda installer instead, so the sconsinstall location will match
the version of Python that system will be using. For example:

% conda install -c conda-forge scons

If you need a specific version of SCons that is different from the current version, pi p has a version option (e.g.
python -mpip install scons==3. 1. 2), or you can follow the instructionsin the following sections.

SCons does comes pre-packaged for installation on many Linux systems. Check your package installation system
to see if there is an up-to-date SCons package available. Many people prefer to install distribution-native packages
if available, as they provide a central point for management and updating; however not al distributions update in a
timely fashion. During the still-ongoing Python 2 to 3 transition, some distributions may still have two SCons packages
available, one which uses Python 2 and one which uses Python 3. Since the latest scons only runs on Python 3, to get
the current version you should choose the Python 3 package.

Iy
=== SCONS 2

https://www.python.org/download
https://www.python.org/download
https://docs.python.org/3/using
https://docs.python.org/3/using
https://pypi.org/project/SCons/
https://pypi.org/project/SCons/

Using SCons Without Installing

1.3. Using SCons Without Installing

Y oudon't actually need to "install" SConsto useit. Nor do you need to "build" it, unlessyou areinterested in producing
the SCons documentation, which does use several tools to produce HTML, PDF and other output formats from files
in the source tree. All you need to do is call the scons. py driver script in alocation that contains an SCons tree,
and it will figure out therest. Y ou can test that like this:

$ python /path/to/unpacked/scripts/scons. py --version

To make use of an uninstalled SCons, the first step is to download either the scons-4.6.0.tar. gz or
scons- 4. 6. 0. zi p, which are available from the SCons download page at https://scons.org/pages/download.html.
Thereisalsoascons- | ocal bundleyou can make useof. It isarranged alittle bit differently, with theideathat you
can include it with your own project if you want people to be able to do builds without having to download or install
SCons. Finally, you can aso use a checkout of the git tree from GitHub at alocation to point to.

Unpack the archive you downloaded, using a utility like tar on Linux or UNIX, or WinZip on Windows. This will
create a directory called scons- 4. 6. 0, usually in your local directory. The driver script will be in a subdirectory
named scri pt s, unlessyou are using scons- | ocal , in which case it will be in the top directory. Now you only
need to call scons. py by giving afull or relative path to it in order to use that SCons version.

Note that instructions for older versions may have suggested running pyt hon setup. py install to"build
and install" SCons. This is no longer recommended (in fact, it is not recommended by the wider Python packaging
community for any end-user installations of Python software). There is a set up. py file, but it is only tested and
used for the automated procedure which prepares an SCons bundle for making arelease on PyPl, and even that is not
guaranteed to work in future.

1.4. Running Multiple Versions of SCons Side-
by-Side

In some cases you may need severa versions of SCons present on a system at the same time - perhaps you have an
older project to build that has not yet been "ported” to a newer SCons version, or maybe you want to test anew SCons
release side-by-side with a previous one before switching over. The use of an "uninstalled" package as described in
the previous section can be of use for this purpose.

Another approach to multiple versions is to create Python virtualenvs, and install different SCons versions in each.
A Python virtual environment is a directory with an isolated set of Python packages, where packages you install/
upgrade/removeinside the environment do not affect anything outsideit, and those you install/upgrade/remove outside
of it do not affect anything inside it. In other words, anything you do with pip in the environment stays in that
environment. The Python standard library provides amodule called venv for creating these (https://docs.python.org/
ellibrary/venv.html), although there are also other tools which provide more precise control of the setup.

Using a virtualenv can be useful even for a single version of SCons, to gain the advantages of having an isolated
environment. It also gets around the problem of not having administrative privileges on a particular system to install
adistribution package or use pip to install to a system location, as the virtualenv is completely under your control.

The following outline shows how this could be set up on a Linux/POSIX system (the syntax will be a bit different
on Windows):

$ create virtual env naned scons3
$ create virtual env naned scons4

Iy
=== SCONS 3

https://scons.org/pages/download.html
https://docs.python.org/e/library/venv.html
https://docs.python.org/e/library/venv.html

Running Multiple Versions of SCons Side-by-Side

source scons3/bin/activate

pip install scons==3.1.2

deacti vate

source scons4/ bin/activate

pip install scons

deacti vate

activate a virtual env and run 'scons' to use that version

R R e A T e T T

Iy
=== SCONS 4

2 Simple Builds

The single most important thing you do when writing a build system for your project is to describe the "what": what
you want to build, and which files you want to build it from. And, in fact, smpler builds may need no more. In this
chapter, you will see several examples of very simple build configurations using SCons, which will demonstrate how
easy SCons makes it to build programs on different types of systems.

2.1. Building Simple C/ C++ Programs

Here'sthe ubiquitous "Hello, World!" [https://en.wikipedia.org/wiki/%22Hello, World!%22 program] programin C:

#i ncl ude <stdi 0. h>
i nt
mai n()

{
}

printf("Hello, worldl\n");

And here'show to build it using SCons. Save the code aboveinto hel | o. ¢, and enter the following into afile named
SConstruct :

Program(' hello.c")

This minimal build file gives SCons three key pieces of information: what you want to build (a program); what you
want to call that program (its base name will be hel | 0), and the source file you want it built from (the hel | o. ¢
file). Pr ogr amisaBuilder, an SCons function that you use to instruct SCons about the "what" of your build.

That's it. Now run the scons command to build the program. On a POSIX-compliant system like Linux or UNIX,
you'll see something like:

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

Building Object Files

cc -0 hello hello.o
scons: done buil ding targets.

On a Windows system with the Microsoft Visual C++ compiler, you'll see something like:

C.\ >scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo

I ink /nologo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.

Noticethat SCons deduced quite abit here: it figured out the name of the program to build, including operating system
specific suffixes (hel | o or hel | 0. exe), based off the basename of the source file; it knows an intermediate object
file should be built (hel | 0. 0 or hel | 0. obj); and it knows how to build those things using the compiler that is
appropriate on the system you're using. It was not necessary to instruct SCons about any of those details. Thisis an
example of how SCons makes it easy to write portable software builds.

For the programming languages SCons already knows about, it will mostly just figureit out. Here'sthe "Hello, World!"
example in Fortran:

program hel | o
print *, 'Hello, World!"
end program hell o

Progran(' hello', 'hello.f90")

$ scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

gfortran -o hello.o -c hello.f90
gfortran -o hello hello.o

scons: done buil ding targets.

2.2. Building Object Files

ThePr ogr ambuilder isonly one of many builders(also called abuilder method) that SCons providesto build different
types of files. Another is the Obj ect builder method, which tells SCons to build an object file from the specified
sourcefile:

oject (' hello.c")

Now when you run the scons command to build the program, it will build just the hel | 0. o object file on a POSIX
system:

Iy
=== SCONS 6

Simple Java Builds

% scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 hello.o -c hello.c

scons: done buil ding targets.

Andjustthehel | 0. obj object file on a Windows system (with the Microsoft Visual C++ compiler):

C.\ >scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo
scons: done buil ding targets.

(Note that this guide will not continue to provide duplicate side-by-side POSIX and Windows output for all of the
examples. Just keep in mind that, unless otherwise specified, any of the examples should work equally well on both
types of systems.)

2.3. Simple Java Builds

SCons also makes building with Java extremely easy. Unlike the Pr ogr amand Obj ect builder methods, however,
the Java builder method requires that you specify the name of a destination directory in which you want the class
files placed, followed by the source directory in which the. j ava fileslive:

Java(' cl asses', 'src')

If the sr c directory contains asingle hel | o. j ava file, then the output from running the scons command would
look something like this (on a POSIX system):

% scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.

scons: Building targets ...

javac -d classes -sourcepath src src/hello.java
scons: done buil ding targets.

Java builds will be covered in much more detail, including building a Java archive (. j ar) and other types of files,
in Chapter 24, Java Builds.

2.4. Cleaning Up After a Build

For cleaning up your build tree, SCons provides a "clean" mode, selected by the - ¢ or - - cl ean option when you
invoke SCons. SCons selects the same set of targets it would in build mode, but instead of building, removes them.
That means you can control what is cleaned in exactly the same way as you control what gets built. If you build the C
example above and then invoke scons - ¢ afterwards, the output on POSIX looks like:

% scons
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Iy
=== SCONS 7

The SConst r uct File

scons: Building targets ...

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

% scons -c

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renmoved hel | 0. 0

Renmoved hel |l o

scons: done cl eani ng targets.

And the output on Windows looks like:

C.\ >scons

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo
link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.
C.\>scons -c

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renoved hel | o. obj

Rermoved hel | 0. exe

scons: done cl eani ng targets.

Notice that SCons changes its output to tell you that it is Cl eaning targets ... and done cl eaning
targets.

2.5. The SConstruct File

If you're used to build systemslike Make you've already figured out that the SConst r uct fileisthe SConsequivalent
of aMakefi | e. Thatis, the SConst r uct fileistheinput file that SCons reads to control the build.

2.5.1. SConst ruct Files Are Python Scripts

Thereis, however, an important difference between an SConst r uct fileand aMakef i | e: the SConst ruct file
is actually a Python script. If you're not already familiar with Python, don't worry. This User's Guide will introduce
you step-by-step to the relatively small amount of Python you'll need to know to be able to use SCons effectively.
And Python isvery easy to learn.

One aspect of using Python as the scripting language is that you can put comments in your SConst r uct fileusing
Python's commenting convention: everything between a # character and the end of the line will be ignored (unless
the character appears inside a string constant).

Arrange to build the "hell o" program
Program("hell o.c") # "hello.c" is the source file.
Pr ogr am("#goodbye. c") # the # in "#goodbye" does not indicate a comment

Iy
=== SCONS 8

SCons Builders Are Order-Independent

You'll see throughout the remainder of this Guide that being able to use the power of areal scripting language can
greatly simplify the solutions to complex requirements of real-world builds.

2.5.2. SCons Builders Are Order-Independent

One important way in which the SConst r uct file is not exactly like a normal Python script, and is more like a
Makef i | e,isthat the order in which the SCons Builder functions are called in the SConst r uct file does not affect
the order in which SCons actually builds the programs and object files you want it to build. 1. In other words, when
you call the Pr ogr ambuilder (or any other builder method), you're not telling SCons to build the program at that
moment. Instead, you're telling SCons what you want accomplished, and it's up to SCons to figure out how to do that,
and to take those stepsif/when it's necessary. you'll learn more about how SCons decides when building or rebuilding
atarget is necessary in Chapter 6, Dependencies, below.

SCons reflects this distinction between calling a builder method like Pr ogr amand actually building the program
by printing the status messages that indicate when it's "just reading" the SConst r uct file, and when it's actually
building the target files. This is to make it clear when SCons is executing the Python statements that make up the
SConst r uct file, and when SConsis actually executing the commands or other actions to build the necessary files.

Let's clarify thiswith an example. Python hasapr i nt function that prints astring of characters to the screen. If you
put pri nt callsaround the callsto the Pr ogr ambuilder method:

print("Calling Program(' hello.c')")
Progran(' hello.c")

print("Calling Program('goodbye.c')")
Pr ogr anm(' goodbye. c')

print("Finished calling Program()")

Then when you execute SCons, you will see the output from calling the pri nt function in between the messages
about reading the SConscr i pt files, indicating that is when the Python statements are being executed:

% scons

scons: Readi ng SConscript files ...
Call'ing Progran('hello.c')

Cal I'i ng Progran{' goodbye. c')

Fi ni shed cal I i ng Progran()

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 goodbye.o -c goodbye. c

cc -0 goodbye goodbye. o

cc -0 hello.o -c hello.c

cc -0 hello hello.o

scons: done buil ding targets.

Notice that SCons built the goodbye program first, even though the "reading SConscri pt " output shows that
Program(' hel |l 0. c') wascaledfirstinthe SConst r uct file.

2.6. Making the SCons Output Less Verbose

You've already seen how SCons prints some messages about what it's doing, surrounding the actual commands used
to build the software:

4n programming parlance, the SConst r uct file is declarative, meaning you tell SCons what you want done and let it figure out the order in
which to do it, rather than strictly imperative, where you specify explicitly the order in which to do things.

Iy
=== SCONS 9

Making the SCons Output Less Verbose

C.\ >scons

scons: Readi ng SConscript files ...

scons: done readi ng SConscript files.
scons: Building targets ...

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)
scons: done buil ding targets.

These messages emphasize the order in which SCons doesits work: all of the configuration files (generically referred
toas SConscr i pt files) are read and executed first, and only then are the target files built. Among other benefits,
these messages help to distinguish between errors that occur while the configuration files are read, and errors that
occur while targets are being built.

One drawback, of course, is that these messages clutter the output. Fortunately, they're easily disabled by using the
- Qoption when invoking SCons:

C.\>scons -Q

cl /Fohello.obj /c hello.c /nol ogo

Iink /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)

So this User's Guide can focus on what SConsis actually doing, the - Qoption will be used to remove these messages
from the output of all the remaining examplesin this Guide.

Iy
=== SCONS 10

3 Less Simple Things to Do
With Builds

Of course, most builds are more complicated than in the previous chapter. In this chapter, you will learn about builds
that incorporate multiple source files, and then about building multiple targets that share some source files.

3.1. Specifying the Name of the Target (Output)
File

You've seen that when you call the Pr ogr ambuilder method, it builds the resulting program with the same base
name as the source file. That is, the following call to build an executable program from the hel | 0. ¢ source file will
build an executable program named hel | 0 on POSIX systems, and an executable program named hel | 0. exe on
Windows systems:

Program(' hello.c")

If you want to build a program with a different base name than the base of the source file name (or even the same
name), you simply put the target file name to the | eft of the source file name:

Program(' new_hello', '"hello.c")

SConsrequiresthetarget file namefirst, followed by the sourcefile name, so that the order mimicsthat of an assignment
statement in most programming languages, including Python: "t arget = source fil es". For an dternative
way to supply thisinformation, see Section 3.6, “Keyword Arguments”.

Now SCons will build an executable program named new_hel | o when run on aPOSIX system:

% scons -Q
cc -0 hello.o -c hello.c
cc -o new hello hello.o

And SCons will build an executable program named new_hel | 0. exe when run on a Windows system:

C.\>scons -Q

Compiling Multiple Source Files

cl /Fohello.obj /c hello.c /nol ogo
link /nol ogo /QUT: new_hel | 0. exe hel |l 0. obj
enbedMani f est ExeCheck(target, source, env)

3.2. Compiling Multiple Source Files

You've just seen how to configure SConsto compile a program from asingle sourcefile. It's more common, of course,
that you'll need to build a program from many input source files, not just one. To do this, you need to put the source
filesin a Python list (enclosed in square brackets), like so:

Program(['prog.c', 'filel.c', '"file2.c'])

A build of the above example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

CC -0 prog.o -c prog.c

cc -0 prog prog.o filel.o file2.0

Notice that SCons deduces the output program name from the first source file specified in the list--that is, because the
first source filewas pr og. ¢, SCons will nhame the resulting program pr og (or pr og. exe on a Windows system).
If you want to specify a different program name, then (as described in the previous section) you slide the list of source
files over to the right to make room for the output program file name. Here is the updated example:

Program(' programi, ['prog.c', 'filel.c', 'file2.c'])

On Linux, abuild of this example would look like:

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

CC -0 prog.o -c prog.c

cc -0 programprog.o filel.o file2.0

Or on Windows:

C.\>scons -Q

cl /Fofilel.obj /c filel.c /nol ogo

cl /Fofile2.0bj /c file2.c /nol ogo

cl /Foprog.obj /c prog.c /nol ogo

link /nol ogo /OUT: program exe prog.obj filel.obj file2.obj
enbedMani f est ExeCheck(target, source, env)

3.3. Making a list of files with A ob

You can aso use the @ ob function to find al files matching a certain template, using the standard shell pattern
matching characters* (to match everything), ? (to match asingle character) and[abc] tomatchany of a,borc.[!
abc] isalso supported, to match any character except a, b or ¢. This makes many multi-source-file builds quite easy:

Iy
=== SCONS 12

Specifying Single Files Vs. Lists of Files

Program(' programi, G ob('*.c'))

A ob has powerful capahilities - it matches even if the file does not currently exist, but SCons can determine that it
would exist after abuild. Y ou will meet it again reading about variant directories (see Chapter 15, Separating Source
and Build Trees: Variant Directories) and repositories (see Chapter 16, Building From Code Repositories).

3.4. Specifying Single Files Vs. Lists of Files

Y ou've now seen two ways to specify the source for a program, one with alist of files:
Program('hello', ['filel.c', '"file2.c'])

And onewith asinglefile:

Program(' hell o', '"hello.c'")

You can actually put asingle file namein alist, too, which you might prefer just for the sake of consistency:
Program(' hello', ['hello.c'])

SCons functionswill accept asingle file name in either form. In fact, internally, SCons treats all input aslists of files,
but allows you to omit the square brackets to cut down alittle on the typing when there's only a single file name.

I mportant

Although SCons functions are forgiving about whether or not you use astring vs. alist for asinglefile name,
Python itself is more strict about treating lists and strings differently. So where SCons allows either a string
or list:

The following two calls both work correctly:
Progran(' progranil', 'programl.c')
Progran(' progran', ['progranR.c'])

Trying to do "Python things' that mix strings and lists will cause errors or lead to incorrect results:

common_sources = ['filel.c', "file2.c']

THE FOLLOW NG | S | NCORRECT AND GENERATES A PYTHON ERRCR
BECAUSE I T TRIES TO ADD A STRING TO A LI ST:
Program(' progranil', comon_sources + 'progranil.c')

The foll owi ng works correctly, because it's adding two
lists together to make anot her |ist.
Program(' progran®', comon_sources + ['progran?.c'])

Iy
=== SCONS 13

Making Lists of Files Easier to Read

3.5. Making Lists of Files Easier to Read

One drawback to the use of a Python list for source files is that each file name must be enclosed in quotes (either
single quotes or double quotes). This can get cumbersome and difficult to read when the list of file names is long.
Fortunately, SCons and Python provide a number of waysto make sure that the SConst r uct file stays easy to read.

To make long lists of file names easier to deal with, SCons provides a Spl i t function that takes a quoted list of
file names, with the names separated by spaces or other white-space characters, and turnsit into alist of separate file
names. Using the Spl i t function turns the previous example into:

Progran(' programi, Split('main.c filel.c file2.c'))

(If you're already familiar with Python, you'll have realized that this is similar to the spl i t () method of Python
string objects.. Unlike the spl i t () method, however, the Spl i t function does not require a string as input and
will wrap up a single non-string object in alist, or return its argument untouched if it's already a list. This comesin
handy as a way to make sure arbitrary values can be passed to SCons functions without having to check the type of
the variable by hand.)

Putting the call to the Spl i t function inside the Pr ogr amcall can also be a little unwieldy. A more readable

alternative is to assign the output from the Spl i t call to a variable name, and then use the variable when calling
the Pr ogr amfunction:

src_files = Split('min.c filel.c file2.c")
Program(' program, src_files)

Lastly, the Spl i t function doesn't care how much white space separates the file names in the quoted string. This
alows you to create lists of file names that span multiple lines, which often makes for easier editing:

src_files = Split("""

mai n. ¢

filel.c

file2.c
")

Program(' program, src_files)

(Notethisexample usesthe Python "triple-quote” syntax, which allows a string to span multiple lines. The three quotes
can be either single or double quotes as long as they match.)

3.6. Keyword Arguments

SCons also alows you to identify the output file and input source files using Python keyword argumentst ar get and
sour ce. A keyword argument is an argument preceded by an identifier, of the form nane=val ue, in afunction
call. The usage looks like this exampl e:

src_files = Split('"min.c filel.c file2.c")
Program(target = program, source=src_files)

Iy
=== SCONS 14

Compiling Multiple Programs

Because the keywords explicitly identify what each argument is, the order does not matter and you can reverse it if
you prefer:

src_files = Split('min.c filel.c file2.c")
Program(source=src_files, target="program)

Whether or not you choose to use keyword arguments to identify the target and source files, and the order in which
you specify them when using keywords, are purely personal choices; SCons functions the same regardless.

3.7. Compiling Multiple Programs

In order to compile multiple programs within the same SConst r uct file, simply cal the Pr ogr ammethod multiple
times, once for each program you need to build:

Program(' foo.c')
Program('bar', ["barl.c', 'bar2.c'])

SCons would then build the programs as follows:

% scons -Q

cc -0 barl.o0 -c barl.c
cc -0 bar2.0 -c bar2.c
cc -0 bar barl.o0 bar2.o0
cc -o foo.o -c foo.c

cc -o foo foo.o

Notice that SCons does not necessarily build the programs in the same order in which you specify them in the
SConst r uct file. SCons does, however, recognize that the individual object files must be built before the resulting
program can be built. (Thiswill be covered in greater detail in Chapter 6, Dependencies, below.)

3.8. Sharing Source Files Between Multiple
Programs

It's common to re-use code by sharing source files between multiple programs. Oneway to do thisisto create alibrary
from the common source files, which can then be linked into resulting programs. (Creating libraries is discussed in
Chapter 4, Building and Linking with Libraries, below.)

A more straightforward, but perhaps less convenient, way to share source files between multiple programsis simply
to include the common filesin the lists of source files for each program:

Program(Split('foo.c conmpbnl.c common2.c'))
Program('bar', Split('barl.c bar2.c comobnl.c comopn2.c'))

SCons recognizes that the object files for the commonl. ¢ and cormon2. ¢ source files each need to be built only
once, even though the resulting object files are each linked in to both of the resulting executable programs:

% scons -Q

Iy
=== SCONS 15

Sharing Source Files Between Multiple Programs

cc -0 barl.o0 -c barl.c

cc -0 bar2.0 -c bar2.c

cc -0 commpnl.o -c¢ commonl. c

CC -0 comDNn2.0 -C conmobn2.c

cc -0 bar barl.o0 bar2.o0 conmpnl.o comDn2. 0
cc -o foo.o -c foo.c

cc -o foo foo.o compnl. o conmon2. o

If two or more programs share alot of common source files, repeating the common filesin the list for each program
can be a maintenance problem when you need to change the list of common files. Y ou can simplify this by creating a
separate Python list to hold the common file names, and concatenating it with other lists using the Python + operator:

comon = ['comonl.c', 'common2.c']
foo files = ['foo.c'] + conmon
bar files = ['"barl.c', 'bar2.c'] + common

Program('foo', foo files)
Progran(' bar', bar_files)

Thisisfunctionally equivalent to the previous example.

Iy
=== SCONS 16

4 Building and Linking with
Libraries

It's often useful to organize large software projects by collecting parts of the software into one or morelibraries. SCons
makes it easy to create libraries and to use them in the programs.

4.1. Building Libraries

Y ou build your own libraries by specifying Li br ar y instead of Pr ogr am
Library('foo', ['fl.c', '"f2.¢c', '"f3.c'])

SConsusesthe appropriatelibrary prefix and suffix for your system. So on POSIX or Linux systems, the above example
would build as follows (although ranlib may not be called on al systems):

% scons -Q

cc -ofl.o-c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1l.0 f2.0 f3.0
ranlib |ibfoo.a

On aWindows system, a build of the above example would look like:

C.\>scons -Q

cl /Fofl.0bj /c f1.c /nologo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nologo

lib /nologo /QUT:foo.lib f1.0bj f2.o0obj f3.obj

The rules for the target name of the library are similar to those for programs: if you don't explicitly specify a target
library name, SConswill deduce onefrom the name of thefirst sourcefile specified, and SConswill add an appropriate
file prefix and suffix if you leave them off.

Building Libraries From Source Code or Object Files

4.1.1. Building Libraries From Source Code or Object
Files

The previous example shows building alibrary from alist of source files. Y ou can, however, aso givethelLi br ary
call object files, and it will correctly realize they are object files. In fact, you can arbitrarily mix source code files and
object filesin the source list:

Library('foo', ['fl.c', '"f2.0', '"f3.¢c', 'f4.0'])

And SCons realizes that only the source code files must be compiled into object files before creating the final library:

% scons -Q

cc -o fl.o -c fl.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0 f4.0
ranlib |ibfoo.a

Of course, in this example, the object files must already exist for the build to succeed. See Chapter 5, Node Objects,
below, for information about how you can build object files explicitly and include the built filesin alibrary.

4.1.2. Building Static Libraries Explicitly: the
StaticLi brary Builder

The Li br ary function builds a traditional static library. If you want to be explicit about the type of library being
built, you can use the synonym St at i cLi br ary functioninstead of Li brary:

StaticLibrary('foo', ['fl.c', 'f2.¢c', 'f3.¢c'])

Thereisno functional difference betweenthe St at i cLi brary and Li br ary functions.

4.1.3. Building Shared (DLL) Libraries: the
Shar edLi br ary Builder

If you want to build a shared library (on POSIX systems) or a DLL file (on Windows systems), you use the
Shar edLi br ary function:

Shar edLi brary(' foo', ['fl.c', 'f2.¢', 'f3.¢c'])

The output on POSIX:

% scons -Q

cc -o fl.os -c fl.c

cc -o f2.0s -c f2.¢c

cc -o f3.0s -c f3.c

cc -0 libfoo.so -shared f1.0s f2.0s f3.o0s

And the output on Windows:

Iy
=== SCONS 18

Linking with Libraries

C.\>scons -Q

cl /Fofl.0bj /c f1.c /nologo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nol ogo

link /nologo /dll /out:foo.dll /inplib:foo.lib f1.0bj f2.0bj f3.obj
RegSer ver Func(target, source, env)

enmbedMani f est D | Check(target, source, env)

Notice again that SCons takes care of building the output file correctly, adding the - shar ed option for a POSIX
compilation, and the/ dl | option on Windows.

4.2. Linking with Libraries

Usually, you build alibrary because you want to link it with one or more programs. Y ou link libraries with a program
by specifying the libraries in the $L1 BS construction variable, and by specifying the directory in which the library
will be found inthe $LI BPATH construction variable:

Library('foo', ['fl.c', '"f2.¢c', '"f3.¢c'])
Program(' prog.c', LIBS=['foo', 'bar'], LIBPATH=".")

Notice, of course, that you don't need to specify alibrary prefix (likel i b) or suffix (like. a or. |i b). SCons uses
the correct prefix or suffix for the current system.

On aPOSIX or Linux system, abuild of the above example would look like:

% scons -Q

cc -ofl.o-c fl.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1.0 f2.0 f3.0
ranlib |ibfoo.a

CC -0 prog.o -c prog.c

CC -0 prog prog.o -L. -Ifoo -Ibar

On aWindows system, a build of the above example would look like:

C.\>scons -Q

cl /Fofl.obj /c f1l.c /nol ogo

cl /Fof2.0bj /c f2.c /nol ogo

cl /Fof3.0bj /c f3.c /nol ogo

lib /nologo /QUT:foo.lib f1.0bj f2.0bj f3.o0bj

cl /Foprog.obj /c prog.c /nol ogo

link /nologo /QUT: prog. exe /LIBPATH:. foo.lib bar.lib prog. obj
enbedMani f est ExeCheck(target, source, env)

Asusual, notice that SCons has taken care of constructing the correct command linesto link with the specified library
on each system.

Note also that, if you only have asingle library to link with, you can specify the library namein single string, instead
of aPython list, so that:

Program(' prog.c', LIBS=' foo', LIBPATH=".")

Iy
=== SCONS 19

Finding Libraries: the $LI BPATH Construction Variable

is equivaent to:
Program(' prog.c', LIBS=['foo0'], LIBPATH=".")

Thisissimilar to the way that SCons handles either a string or alist to specify a single source file.

4.3. Finding Libraries: the $LI1 BPATH
Construction Variable

By default, the linker will only look in certain system-defined directories for libraries. SCons knows how to look for
libraries in directories that you specify with the $LI BPATH construction variable. $L1 BPATH consists of a list of
directory names, like so:

Program(' prog.c', LIBS = "'m,
LI BPATH = ['/usr/lib', '/usr/local/lib'])

Using a Python list is preferred because it's portable across systems. Alternatively, you could put all of the directory
names in asingle string, separated by the system-specific path separator character: acolon on POSIX systems:

LI BPATH = ' /usr/lib:/usr/local/lib'
or a semi-colon on Windows systems:
LI BPATH = 'C:\\lib; D:\\Ii b’

(Note that Python requires that the backslash separators in a Windows path name be escaped within strings.)

When the linker is executed, SCons will create appropriate flags so that the linker will look for libraries in the same
directories as SCons. So on aPOSIX or Linux system, abuild of the above example would look like:

% scons -Q
CC -0 prog.o -c prog.c
CC -0 prog prog.o -L/usr/lib -L/usr/local/lib -Im

On aWindows system, a build of the above example would look like:
C.\>scons -Q
cl /Foprog.obj /c prog.c /nol ogo

link /nologo /QUT: prog. exe /LI BPATH: \usr\lib /LIBPATH: \usr\local\lib mlib prog.obj
enbedMani f est ExeCheck(target, source, env)

Note again that SCons has taken care of the system-specific details of creating the right command-line options.

Iy
=== SCONS 20

5 Node Objects

Internally, SConsrepresents all of the files and directories it knows about as Nodes. These internal objects (not object
files) can be used in avariety of waysto make your SConscr i pt files portable and easy to read.

5.1. Builder Methods Return Lists of Target
Nodes

All builder methods return alist of Node objects that identify the target file or files that will be built. These returned
Nodes can be passed as arguments to other builder methods.

For example, suppose that we want to build the two object files that make up a program with different options. This
would mean calling the Obj ect builder once for each object file, specifying the desired options:

Obj ect (" hello.c', CCFLAGS='-DHELLO)
nj ect (' goodbye. c', CCFLAGS=' - DGOODBYE')

One way to combine these object files into the resulting program would be to cal the Pr ogr ambuilder with the
names of the object files listed as sources:

Obj ect (" hello.c', CCFLAGS='-DHELLO)
oj ect (' goodbye. ¢c', CCFLAGS=' - DGOODBYE')
Program([' hel l 0. 0', 'goodbye.o'])

The problem with specifying the names as stringsisthat our SConst r uct fileisno longer portable across operating
systems. It won't, for example, work on Windows because the object files there would be named hel | 0. obj and
goodbye. obj , not hel | 0. 0 and goodbye. o.

A better solution is to assign the lists of targets returned by the calls to the Obj ect builder to variables, which we
can then concatenate in our call to the Pr ogr ambuilder:

hello_ list = Object(' hello.c', CCFLAGS='-DHELLO)
goodbye |ist = Object (' goodbye.c', CCFLAGS='- DGOODBYE')
Program(hell o_list + goodbye |ist)

Explicitly Creating File and Directory Nodes

Thismakes our SConst r uct file portable again, the build output on Linux looking like:

% scons -Q

cc -0 goodbye.o -c - DGOODBYE goodbye. c
cc -0 hello.o -c -DHELLO hello.c

cc -0 hello hello.o goodbye. o

And on Windows:

C.\>scons -Q

cl / Fogoodbye. obj /c goodbye.c - DGOODBYE

cl /Fohello.obj /c hello.c -DHELLO

link /nologo /QUT: hel | 0. exe hel | 0. obj goodbye. obj
enmbedMani f est ExeCheck(target, source, env)

WEe'll see examples of using the list of nodes returned by builder methods throughout the rest of this guide.

5.2. Explicitly Creating File and Directory
Nodes

It's worth mentioning here that SCons maintains a clear distinction between Nodes that represent files and Nodes that
represent directories. SCons supportsFi | e and Di r functions that, respectively, return afile or directory Node:

hello c = File('hello.c")
Program(hel | o_c)

classes = Dir('classes')
Java(cl asses, 'src')

Normally, you don't need to call Fi | e or Di r directly, because calling a builder method automatically trests strings
as the names of files or directories, and translates them into the Node objects for you. The Fi | e and Di r functions
can come in handy in situations where you need to explicitly instruct SCons about the type of Node being passed to a
builder or other function, or unambiguously refer to a specific file in adirectory tree.

There are also times when you may need to refer to an entry in a file system without knowing in advance whether
it'safile or adirectory. For those situations, SCons also supports an Ent r y function, which returns a Node that can
represent either afile or adirectory.

xyzzy = Entry('xyzzy')

Thereturned xyzzy Node will be turned into afile or directory Node the first timeit is used by a builder method or
other function that requires one vs. the other.

5.3. Printing Node File Names

One of the most common things you can do with aNode is useit to print the file name that the node represents. Keep
in mind, though, that because the object returned by a builder call isalist of Nodes, you must use Python subscripts
to fetch individual Nodes from the list. For example, the following SConst r uct file:

Iy
=== SCONS 22

Using aNode's File Name as a String

object list = Cbject('hello.c")

program|ist = Progran(object list)

print("The object file is: %" %bject |ist[0])
print("The programfile is: %" %rogramlist[0])

Would print the following file names on a POSIX system:

% scons -Q

The object file is: hello.o
The programfile is: hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

And the following file names on a Windows system:

C.\>scons -Q

The object file is: hello.obj

The programfile is: hello.exe

cl /Fohello.obj /c hello.c /nol ogo

link /nol ogo /QUT: hel | 0. exe hel | 0. obj
enbedMani f est ExeCheck(target, source, env)

Note that in the above example, the obj ect _|i st [0] extractsan actual Node object from the list, and the Python
pri nt function converts the object to a string for printing.

5.4. Using a Node's File Name as a String

Printing aNode's name as described in the previous section works because the string representation of aNode object
is the name of thefile. If you want to do something other than print the name of the file, you can fetch it by using the
builtin Python st r function. For example, if you want to use the Python o0s. pat h. exi st s to figure out whether
afile exists whilethe SConst r uct fileisbeing read and executed, you can fetch the string as follows:

i mport os.path
programlist = Progran(' hello.c')
program nane = str(programlist[0])
i f not os.path. exists(program nane):
print ("% does not exist!"%rogram nane)

Which executes as follows on a POSIX system:

% scons -Q

hell o does not exi st!

cc -o hello.o -c hello.c
cc -o hello hello.o

5.5. Get Bui | dPat h: Getting the Path From a
Node or String

env. Get Bui | dPat h(file_or _Iist) returnsthe path of aNode or astring representing apath. It can also take
alist of Nodes and/or strings, and returns the list of paths. If passed asingle Node, the result is the same as calling

Iy
=== SCONS 23

Get Bui | dPat h: Getting the Path From aNode or
String

st r (node) (seeabove). Thestring(s) can have embedded construction variables, which are expanded asusual, using
the calling environment's set of variables. The paths can be files or directories, and do not have to exist.

env=Envi r onment (VAR="val ue")
n=Fil e("foo.c")
print (env. Get Bui | dPat h([n, "sub/dir/$VAR']))

Would print the following file names:

% scons -Q
['foo.c', 'sub/dir/value']
scons: ~.' is up to date.

Thereis also afunction version of Get Bui | dPat h which can be called without an Envi r onnent ; that uses the
default SCons Envi r onment to do substitution on any string arguments.

Iy
=== SCONS 24

6 Dependencies

So far we've seen how SCons handles one-time builds. But one of the main functions of a build tool like SConsisto
rebuild only what is necessary when source files change--or, put another way, SCons should not waste time rebuilding
things that don't need to be rebuilt. You can see this at work simply by re-invoking SCons after building our smple
hel | o example:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q

scons: ~.' is up to date

The second time it is executed, SCons realizes that the hel | o program is up-to-date with respect to the current
hel | o. ¢ sourcefile, and avoidsrebuildingit. Y ou can seethismore clearly by namingthehel | o program explicitly
on the command line:

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

Note that SConsreports™. ..is up to date" only for target files named explicitly on the command line, to
avoid cluttering the output.

6.1. Deciding When an Input File Has Changed:
the Deci der Function

Another aspect of avoiding unnecessary rebuildsis the fundamental build tool behavior of rebuilding things when an
input file changes, so that the built software is up to date. By default, SCons keeps track of this through a content
signature, or hash, of the contents of each file, although you can easily configure SCons to use the modification times
(or time stamps) instead. Y ou can even write your own Python function for deciding if an input file should trigger
arebuild.

Using Content Signaturesto Decide if a File Has Changed

6.1.1. Using Content Signatures to Decide if a File Has
Changed

By default, SCons uses a cryptographic hash of the file's contents, not the file's modification time, to decide whether
afile has changed. This means that you may be surprised by the default SCons behavior if you are used to the Make
convention of forcing arebuild by updating the file's modification time (using the touch command, for example):

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% touch hello.c

% scons -Q hello

scons: " hello' is up to date

Even though the file's modification time has changed, SCons realizes that the contents of the hel | o. ¢ file have
not changed, and therefore that the hel | o program need not be rebuilt. This avoids unnecessary rebuilds when, for
example, someone rewrites the contents of a file without making a change. But if the contents of the file really do
change, then SCons detects the change and rebuilds the program as required:

% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

% [CHANGE THE CONTENTS OF hel | o. c]
% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

Note that you can, if you wish, specify the default behavior of using content signatures explicitly, using the Deci der
function asfollows:

Progran(' hello.c")
Deci der (' content')

You can aso usethe string ' MD5' asasynonym for' cont ent' when caling the Deci der function - this older
name is deprecated since SCons now supports a choice of hash functions, not just the MD5 function.

6.1.1.1. Ramifications of Using Content Signatures

Using content signatures to decide if an input file has changed has one surprising benefit: if a source file has been
changed in such a way that the contents of the rebuilt target file(s) will be exactly the same as the last time the file
was built, then any "downstream” target files that depend on the rebuilt-but-not-changed target file actually need not
be rebuilt.

So if, for example, a user were to only change acomment in ahel | o. c file, then the rebuilt hel | o. o file would
be exactly the same as the one previously built (assuming the compiler doesn't put any build-specific information in
the object file). SCons would then realize that it would not need to rebuild the hel | o program asfollows:

% scons -Q hello

cc -o hello.o -c hello.c

cc -o hello hello.o

% [CHANGE A COWENT I N hel |l o. c]
% scons -Q hello

cc -o hello.o -c hello.c

Iy
=== SCONS 26

Using Time Stampsto Decide If a File Has Changed

scons: " hello' is up to date.

In essence, SCons "short-circuits' any dependent builds when it realizes that a target file has been rebuilt to exactly
the samefile asthe last build. This does take some extra processing time to read the contents of thetarget (hel | 0. 0)
file, but often saves time when the rebuild that was avoided would have been time-consuming and expensive.

6.1.2. Using Time Stamps to Decide If a File Has
Changed

If you prefer, you can configure SCons to use the modification time of afile, not the file contents, when deciding if a
target needs to be rebuilt. SCons gives you two ways to use time stamps to decide if an input file has changed since
the last time atarget has been built.

Themost familiar way to usetime stampsistheway Make does: that is, have SCons decide that atarget must be rebuilt
if a source file's modification time is newer than the target file. To do this, call the Deci der function asfollows:

oject (' hello.c")
Deci der (' ti nest anp- newer ')

This makes SCons act like Make when afile's modification timeis updated (using the touch command, for example):

% scons -Q hello.o

cc -0 hello.o -c hello.c
% touch hello.c

% scons -Q hello.o

cc -0 hello.o -c hello.c

And, in fact, because this behavior is the same as the behavior of Make, you can also use the string ' make' asa
synonym for' ti mest anp- newer' when caling the Deci der function:

oject (' hello.c")
Deci der (' make')

One drawback to using times stamps exactly like Make is that if an input file's modification time suddenly becomes
older than a target file, the target file will not be rebuilt. This can happen if an old copy of a source file is restored
from a backup archive, for example. The contents of the restored file will likely be different than they were the last
time a dependent target was built, but the target won't be rebuilt because the modification time of the source file is
not newer than the target.

Because SCons actually storesinformation about the source files' time stamps whenever atarget is built, it can handle
this situation by checking for an exact match of the sourcefile time stamp, instead of just whether or not the sourcefile
is newer than the target file. To do this, specify the argument ' t i mest anp- mat ch' when calling the Deci der
function:

oject (' hello.c")
Deci der (' ti mestanp-mat ch')

When configured this way, SCons will rebuild atarget whenever a source file's modification time has changed. So if
weusethet ouch -t option to change the modification time of hel | 0. ¢ to an old date (January 1, 1989), SCons
will still rebuild the target file:

Iy
=== SCONS 27

Deciding If aFile Has Changed Using Both MD
Signatures and Time Stamps

% scons -Q hello.o

cc -o hello.o -c hello.c

% touch -t 198901010000 hell o.c
% scons -Q hello.o

cc -o hello.o -c hello.c

In general, the only reason to prefer t i mest anp- newer instead of t i nest anp- nat ch, would be if you have
some specific reason to require this Make-like behavior of not rebuilding atarget when an otherwise-modified source
fileisolder.

6.1.3. Deciding If a File Has Changed Using Both MD
Sighatures and Time Stamps

As a performance enhancement, SCons provides a way to use a file's content signature, but to read those contents
only when thefil€'s timestamp has changed. To do this, call the Deci der functionwith' cont ent - ti mest anp'
argument as follows:

Program(' hello.c")
Deci der (' content-ti nmestanp')

So configured, SCons will still behave like it does when using Deci der (' content'):

% scons -Q hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o
% touch hello.c
% scons -Q hello
scons: " hello' is up to date
%edit hello.c
[CHANGE THE CONTENTS OF hel | o. c]
% scons -Q hello
cc -0 hello.o -c hello.c
cc -0 hello hello.o

However, the second call to SCons in the above output, when the build is up-to-date, will have been performed by
simply looking at the modification time of the hel | 0. ¢ file, not by opening it and performing a signature calcuation
on its contents. This can significantly speed up many up-to-date builds.

The only drawback to using Deci der (' content-ti mestanp') isthat SCons will not rebuild a target file
if a source file was modified within one second of the last time SCons built the file. While most developers are
programming, thisisn't aproblem in practice, sinceit's unlikely that someone will have built and then thought quickly
enough to make a substantive change to a source file within one second. Certain build scripts or continuous integration
tools may, however, rely on the ability to apply changes to files automatically and then rebuild as quickly as possible,
inwhich case use of Deci der (' content-ti mestanp') may not be appropriate.

6.1.4. Extending SCons: Writing Your Own Custom
Deci der Function

The different string values that we've passed to the Deci der function are essentially used by SCons to pick one of
several specific internal functions that implement various ways of deciding if a dependency (usualy a source file)

Iy
=== SCONS 28

Extending SCons. Writing Y our Own Custom Deci der
Function

has changed since a target file has been built. As it turns out, you can also supply your own function to decide if a
dependency has changed.

For example, suppose we have an input file that contains a lot of data, in some specific regular format, that is used
to rebuild alot of different target files, but each target file really only depends on one particular section of the input
file. We'd like to have each target file depend on only its section of the input file. However, since the input file may
contain alot of data, we want to open theinput file only if itstimestamp has changed. This could be donewith acustom
Deci der function that might look something like this:

Progran(' hello.c")
def decide_if_changed(dependency, target, prev_ni, repo_node=None):
i f dependency.get tinmestanp() != prev_ni.tinmestanp:
dep = str(dependency)
tgt = str(target)
if specific_part_of file_has_changed(dep, tgt):
return True
return Fal se
Deci der (deci de_i f _changed)

Note that in the function definition, the dependency (input file) is the first argument, and then the t ar get . Both
of these are passed to the functions as SCons Node objects, which we convert to strings using the Pythonst r () .

The third argument, pr ev_ni , is an object that holds the content signature and/or timestamp information that was
recorded about the dependency the last time the target was built. A pr ev_ni object can hold different information,
depending on the type of thing that the dependency argument represents. For normal files, the pr ev_ni object
has the following attributes:

csig
The content signature: a cryptgraphic hash, or checksum, of the file contents of the dependency file the last
timethet ar get wasbuilt.

si ze
The sizein bytes of thedependency file the last time the target was built.

ti mestanp
The modification time of the dependency filethelast timethet ar get was built.

These attributes may not be present at the time of the first run. Without any prior build, no targets have been created
and no . sconsi gn DB file exists yet. So you should always check whether the pr ev_ni attribute in question is
available (use the Python hasat t r method or at r y-except block).

Thefourthargumentr epo_node isthe Node touseif itisnot Nonewhen comparing Bui | dI nf 0. Thisistypically
only set when the target node only existsinaReposi t ory

Note that ignoring some of the argumentsin your custom Deci der function isa perfectly normal thing to do, if they
don't impact the way you want to decide if the dependency file has changed.

We finally present a small example for acsi g-based decider function. Note how the signature information for the
dependency filehasto get initialized viaget _csi g during each function call (thisis mandatory!).

env = Environment ()

Iy
=== SCONS 29

Mixing Different Ways of Deciding If aFile Has
Changed

def config file_decider(dependency, target, prev_ni, repo_node=None):
i mport os.path

W always have to init the .csig val ue..
dep_csi g = dependency. get _csi g()
.csig may not exist, because no target was built yet..
if not prev_ni.hasattr("csig"):
return True
Target file may not exist yet
if not os.path.exists(str(target.abspath)):
return True
if dep_csig !'= prev_ni.csig:
Some change on source file => update installed one
return True
return Fal se

def update file():
with open("test.txt", "a") as f:
f.wite("sone |[ine\n")

update file()

Activate our own decider function
env. Deci der (config file_decider)

env.Install ("install", "test.txt")

6.1.5. Mixing Different Ways of Deciding If a File Has
Changed

The previous examples have all demonstrated calling the global Deci der function to configure al dependency
decisions that SCons makes. Sometimes, however, you want to be able to configure different decision-making for
different targets. When that's necessary, you can use the env. Deci der method to affect only the configuration
decisions for targets built with a specific construction environment.

For example, if we arbitrarily want to build one program using content signatures and another using file modification
times from the same source we might configure it this way:

envl Envi ronnment (CPPPATH = ['."'])

env2 envl. Cl one()

env2. Deci der (' ti mest anp-match')

envl. Progran{(' prog-content', 'programl.c')
env2. Progran{' prog-ti mestanp', 'progranR.c')

If both of the programsinclude the samei nc. h file, then updating the modification time of i nc. h (using the touch
command) will cause only pr og-ti mest anp to be rebuilt:

% scons -Q
cc -0 progranil.o -c -1. progranil.c

Iy
=== SCONS 30

Implicit Dependencies: The $CPPPATH Construction
Variable

CC -0 prog-content programl.o

cc -0 progranR.o -c -1. progran®.c
CC -0 prog-timestanp progran?.o

% touch inc.h

% scons -Q

cc -0 progranR.o -c -1. progran®.c
CC -0 prog-timestanp progran?.o

6.2. Implicit Dependencies: The $CPPPATH
Construction Variable

Now suppose that our "Hello, World!" program actually has an #i ncl ude lineto include the hel | o. h filein the
compilation:

#i ncl ude <hel |l 0. h>

i nt
mai n()
{
printf("Hello, %!\n", string);
}

And, for completeness, the hel | o. h filelooks like this:

#define string “wor | d"

In this case, we want SCons to recognize that, if the contents of the hel | 0. h file change, the hel | o program must
be recompiled. To do this, we need to modify the SConst r uct filelike so:

Program(' hello.c', CPPPATH=".")

The $CPPPATH value tells SCons to look in the current directory (' . ') for any filesincluded by C source files (. ¢
or . h files). With this assignment in the SConst r uct file:

% scons -Q hello

cc -0 hello.o -c -I. hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

% [CHANGE THE CONTENTS OF hel | 0. h]
% scons -Q hello

cc -0 hello.o -c -I. hello.c

cc -0 hello hello.o

First, noticethat SConsconstructedthe- | . argumentfromthe' . ' inthe SCPPPATH variable so that the compilation
would find the hel | 0. h filein the local directory.

Second, realize that SCons knows that the hel | o program must be rebuilt because it scans the contents of the
hel | o. c filefor the#i ncl ude linesthat indicate another file is being included in the compilation. SCons records

Iy
=== SCONS 31

Caching Implicit Dependencies

these as implicit dependencies of the target file, Consequently, when the hel | 0. h file changes, SCons realizes that
the hel | o. ¢ file includes it, and rebuilds the resulting hel | o program that depends on both the hel | 0. ¢ and
hel | 0. hfiles.

Likethe$LI BPATHvariable, the $CPPPATH variable may bealist of directories, or astring separated by the system-
specific path separation character (":' on POSIX/Linux, ';' on Windows). Either way, SCons creates the right command-
line options so that the following example:

Program(' hello.c', CPPPATH = ['include', '/home/project/inc'])

Will look like this on POSIX or Linux:

% scons -Q hello
cc -0 hello.o -c -linclude -1/hone/project/inc hello.c
cc -0 hello hello.o

And like this on Windows:

C.\>scons -Q hell o. exe

cl /Fohello.obj /c hello.c /nologo /1include /I\home\project\inc
link /nol ogo /QUT: hel | 0. exe hel | 0. obj

enbedMani f est ExeCheck(target, source, env)

6.3. Caching Implicit Dependencies

Scanning each file for #i ncl ude lines does take some extra processing time. When you're doing a full build of a
large system, the scanning time is usually avery small percentage of the overall time spent on the build. Y ou're most
likely to notice the scanning time, however, when you rebuild all or part of alarge system: SConswill likely take some
extratime to "think about" what must be built before it issues the first build command (or decides that everything is
up to date and nothing must be rebuilt).

In practice, having SCons scan files saves time relative to the amount of potential time lost to tracking down subtle
problems introduced by incorrect dependencies. Nevertheless, the "waiting time" while SCons scans files can annoy
individual developerswaiting for their builds to finish. Consequently, SCons letsyou cache the implicit dependencies
that its scanners find, for use by later builds. You can do this by specifying the - - i npl i ci t - cache option on
the command line:

% scons -Q --inplicit-cache hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

If you don't want to specify - -i npl i ci t - cache on the command line each time, you can make it the default
behavior for your build by setting thei npl i cit _cache optioninan SConscri pt file:

Set Option('inplicit_cache', 1)

SCons does not cache implicit dependencies like this by default because the - -i npl i ci t - cache causes SCons
to simply use the implicit dependencies stored during the last run, without any checking for whether or not
those dependencies are still correct. Specificaly, thismeans--i npl i ci t - cache instructs SCons to not rebuild
"correctly" in the following cases:

Iy
=== SCONS 32

The--inplicit-deps-changed Option

e When--inplicit-cache isused, SCons will ignore any changes that may have been made to search paths
(like $CPPPATH or $LI BPATH,). This can lead to SCons not rebuilding afile if a change to $CPPPATH would
normally cause a different, same-named file from a different directory to be used.

* When--inplicit-cacheisused, SConswill not detect if asame-named file has been added to adirectory that
is earlier in the search path than the directory in which the file was found last time.

6.3.1. The--inplicit-deps-changed Option

When using cached implicit dependencies, sometimes you want to "start fresh" and have SCons re-scan the files for
which it previously cached the dependencies. For example, if you have recently installed a new version of external
code that you use for compilation, the external header files will have changed and the previously-cached implicit
dependencies will be out of date. Y ou can update them by running SConswiththe- - i npl i ci t - deps- changed
option:

% scons -Q --inplicit-deps-changed hell o
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

In this case, SCons will re-scan all of the implicit dependencies and cache updated copies of the information.

6.3.2. The--inplicit-deps-unchanged Option

By default when caching dependencies, SCons notices when a file has been modified and re-scans the file for any
updated implicit dependency information. Sometimes, however, you may want to force SCons to use the cached
implicit dependencies, even if the sourcefiles changed. This can speed up abuild for example, when you have changed
your sourcefilesbut know that you haven't changed any #i ncl ude lines. Inthiscase, youcanusethe--i nplicit -
deps- unchanged option:

% scons -Q --inplicit-deps-unchanged hello
cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date

Inthiscase, SConswill assumethat the cached implicit dependencies are correct and will not bother to re-scan changed
files. For typical builds after small, incremental changesto sourcefiles, the savings may not be very big, but sometimes
every bit of improved performance counts.

6.4. Explicit Dependencies: the Depends
Function

Sometimes a file depends on another file that is not detected by an SCons scanner. For this situation, SCons allows
you to specific explicitly that one file depends on another file, and must be rebuilt whenever that file changes. This
is specified using the Depends method:

hell o = Progran(' hello.c')
Depends(hell o, 'other file")

Iy
=== SCONS 33

Dependencies From External Files: the Par seDepends
Function

% scons -Q hello
cc -c hello.c -0 hello.o
cc -0 hello hello.o
% scons -Q hello
scons: " hello' is up to date
% edit other file
[CHANGE THE CONTENTS OF ot her fil e]
% scons -Q hello
cc -c hello.c -0 hello.o
cc -0 hello hello.o

Note that the dependency (the second argument to Depends) may also be a list of Node objects (for example, as
returned by acall to a Builder):

hell o = Program(' hello.c")
goodbye = Progran(' goodbye. c')
Depends(hel | o, goodbye)

in which case the dependency or dependencies will be built before the target(s):

% scons -Q hello

cc -c goodbye.c -o goodbye. o
cc -0 goodbye goodbye. o

cc -c hello.c -o hello.o

cc -0 hello hello.o

6.5. Dependencies From External Files: the
Par seDepends Function

SCons has built-in scanners for a number of languages. Sometimes these scanners fail to extract certain implicit
dependencies due to limitations of the scanner implementation.

The following example illustrates a case where the built-in C scanner is unable to extract the implicit dependency
on a header file.

#defi ne FOO HEADER <f 00. h>
#i ncl ude FOO_HEADER

int main() {
return FOO
}

% scons -Q

cc -0 hello.o -¢c -1. hello.c
cc -o hello hello.o

% [CHANGE CONTENTS OF f 00. h]
% scons -Q

Iy
=== SCONS 34

Ignoring Dependencies. the | gnor e Function

scons: ~.' is up to date.

Apparently, the scanner does not know about the header dependency. Not being a full-fledged C preprocessor, the
scanner does not expand the macro.

In these cases, you may also use the compiler to extract the implicit dependencies. Par seDepends can parse the
contents of the compiler output in the style of Make, and explicitly establish all of the listed dependencies.

Thefollowing example uses Par seDepends to process acompiler generated dependency file which is generated as
aside effect during compilation of the object file:

obj = Cbject('hello.c', CCFLAGS='-MD -Mr hello.d , CPPPATH='.')
Si deEffect (' hell o.d', obj)

Par seDepends(' hel l 0.d")

Program(' hell o', obj)

% scons -Q

cc -0 hello.o -c -MD -M- hello.d -1. hello.c
cc -0 hello hello.o

% [CHANGE CONTENTS OF fo0. h]

% scons -Q

cc -0 hello.o -c -MD -M- hello.d -1. hello.c

Parsing dependencies from a compiler-generated . d file has a chicken-and-egg problem, that causes unnecessary
rebuilds:

% scons -Q

cc -0 hello.o -c -MD -MF hello.d -I. hello.c

cc -0 hello hello.o

% scons -Q --debug=expl ai n

scons: rebuilding “hello.o because foo.h' is a new dependency

cc -0 hello.o -c -MD -MF hello.d -1. hello.c
% scons -Q
scons: ~.' is up to date.

In thefirst pass, the dependency file is generated while the object fileis compiled. At that time, SCons does not know
about the dependency on f 00. h. In the second pass, the object file is regenerated because f 00. h is detected as a
new dependency.

Par seDepends immediately reads the specified file at invocation time and just returns if the file does not exist. A
dependency file generated during the build process is not automatically parsed again. Hence, the compiler-extracted
dependencies are not stored in the signature database during the same build pass. This limitation of Par seDepends
leads to unnecessary recompilations. Therefore, Par seDepends should only be used if scanners are not available
for the employed language or not powerful enough for the specific task.

6.6. Ignoring Dependencies: the | gnor e
Function

Sometimes it makes sense to not rebuild a program, even if a dependency file changes. In this case, you would tell
SCons specifically to ignore a dependency using the | gnor e function as follows:

Iy
=== SCONS 35

Order-Only Dependencies: the Requi r es Function

hel | o_obj =Cbj ect (' hello.c")
hell o = Program hell o_obj)
I gnore(hello_obj, '"hello.h")

% scons -Q hello
cc -c -0 hello.o hello.c
cc -0 hello hello.o
% scons -Q hello
scons: " hello' is up to date.
%edit hello.h
[CHANGE THE CONTENTS OF hel | 0. h]
% scons -Q hello
scons: " hello' is up to date.

Now, the above example is alittle contrived, because it's hard to imagine a real-world situation where you wouldn't
want to rebuild hel | o if the hel | 0. h file changed. A more redlistic example might be if the hel | o program is
being built in adirectory that is shared between multiple systems that have different copies of the st di 0. h include
file. In that case, SCons would notice the differences between the different systems' copies of st di 0. h and would
rebuild hel | o each time you change systems. Y ou could avoid these rebuilds as follows:

hell o = Progran(' hello.c', CPPPATH=['/usr/include'])
| gnore(hello, '/usr/include/stdio.h")

| gnor e can aso be used to prevent a generated file from being built by default. Thisis dueto the fact that directories
depend on their contents. So to ignore a generated file from the default build, you specify that the directory should
ignorethe generated file. Notethat thefilewill still bebuilt if the user specifically requeststhetarget on sconscommand
ling, or if thefile is a dependency of another file which is requested and/or is built by default.

hel | o_obj =Cbj ect (' hell o.c")
hell o = Program(hell o_obj)
I gnore('.",[hello, hello_obj])

% scons -Q

scons: ~.' is up to date.

% scons -Q hello

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello

scons: " hello' is up to date.

6.7. Order-Only Dependencies: the Requi r es
Function

Occasionaly, it may be useful to specify that a certain file or directory must, if necessary, be built or created before
some other target is built, but that changes to that file or directory do not require that the target itself be rebuilt. Such

Iy
=== SCONS 36

Order-Only Dependencies: the Requi r es Function

arelationship is called an order-only dependency because it only affects the order in which things must be built--the
dependency before the target--but it is not a strict dependency relationship because the target should not change in
response to changes in the dependent file.

For example, suppose that you want to create a file every time you run a build that identifies the time the build was
performed, the version number, etc., and which isincluded in every program that you build. The version file's contents
will change every build. If you specify a normal dependency relationship, then every program that depends on that
file would be rebuilt every time you ran SCons. For example, we could use some Python codeinaSConst r uct file
to create anew ver si on. c file with a string containing the current date every time we run SCons, and then link a
program with the resulting object file by listing ver si on. ¢ in the sources:

i mport tine

version_c_text =

char *date = "%";
"ttoptinme.ctinme(tinme.tinme())
open('version.c', 'wW).wite(version_c_text)
hell o = Program([' hello.c', 'version.c'])

If welist ver si on. c as an actua source file, though, then the ver si on. o filewill get rebuilt every time we run
SCons (because the SConst r uct fileitself changes the contents of ver si on. ¢) and the hel | o executable will
get re-linked every time (because the ver si on. o file changes):

% scons -Q hello

cc -0 hello.o -c hello.c

CC -0 version.o -c version.c
cc -0 hello hello.o version.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello hello.o version.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello hello.o version.o

(Notethat for the above example to work, we sleep for one second in between each run, so that the SConst r uct file
will createaver si on. c filewith atime string that's one second later than the previous run.)

One solution isto usethe Requi r es function to specify that thever si on. o must be rebuilt beforeit is used by the
link step, but that changesto ver si on. o should not actually cause the hel | o executable to be re-linked:

i mport time

version_c_text =

char *date = "%";
"ttt time.ctime(time.time())
open('version.c', "W).wite(version_c_text)

versi on_obj = Object('version.c')

Iy
=== SCONS 37

The Al waysBui | d Function

hell o = Progran(' hello.c',
LI NKFLAGS = str(version_obj[0]))

Requi res(hell o, version_obj)

Notice that because we can no longer list ver si on. ¢ asone of the sourcesfor the hel | o program, we haveto find
some other way to get it into the link command line. For this example, we're cheating a bit and stuffing the object
file name (extracted fromver si on_obj list returned by the Qbj ect builder cal) into the $LI NKFLAGS variable,
because $L1 NKFLAGS is aready included in the $L1 NKCOMcommand line.

With these changes, we get the desired behavior of only re-linking the hel | o executable when the hel | 0. ¢ has
changed, even though the ver si on. o is rebuilt (because the SConst ruct file still changes the ver si on. ¢
contents directly each run):

% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello.o -c hello.c

cc -0 hello version.o hello.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
scons: " hello' is up to date
% sl eep 1

% [CHANGE THE CONTENTS OF hel |l o. c]
% scons -Q hello

CC -0 version.o -c version.c
cc -0 hello.o -c hello.c

cc -0 hello version.o hello.o
% sl eep 1

% scons -Q hello

CC -0 version.o -c version.c
scons: " hello' is up to date

6.8. The Al waysBui | d Function

How SCons handles dependencies can also be affected by the Al waysBui | d method. When afile is passed to the
Al waysBui | d method, like so:

hell o = Progran(' hello.c')
Al waysBui | d(hel | 0)

Then the specified target file (hel | o in our example) will always be considered out-of-date and rebuilt whenever that
target file is evaluated while walking the dependency graph:

% scons -Q

cc -0 hello.o -c hello.c
cc -0 hello hello.o

% scons -Q

cc -0 hello hello.o

The Al waysBui | d function has a somewhat misleading name, because it does not actually mean the target file will
be rebuilt every single time SCons is invoked. Instead, it means that the target will, in fact, be rebuilt whenever the

Iy
=== SCONS 38

The Al waysBui | d Function

target file is encountered while evaluating the targets specified on the command line (and their dependencies). So
specifying some other target on the command line, atarget that does not itself depend on the Al waysBui | d target,
will still be rebuilt only if it's out-of-date with respect to its dependencies:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q hello.o

scons: " hello.o'" is up to date

Iy
=== SCONS 39

7 Environments

An environment is a collection of values that can affect how a program executes. SCons distinguishes between
three different types of environments that can affect the behavior of SCons itself (subject to the configuration in the
SConscri pt files), aswell asthe compilers and other tools it executes:

External Environment
The External Environment isthe set of variablesin the user's environment at the time the user runs SCons. These
variables are not automatically part of an SCons build but are available to be examined if needed. See Section 7.1,
“Using Values From the External Environment”, below.

Construction Environment
A Construction Environment is a distinct object created within a SConscr i pt file and which contains values
that affect how SCons decides what action to use to build a target, and even to define which targets should
be built from which sources. One of the most powerful features of SCons is the ability to create multiple
construction environments, including the ability to clone a new, customized construction environment from an
existing construction environment. See Section 7.2, “Construction Environments”, below.

Execution Environment
An Execution Environment isthe values that SCons sets when executing an external command (such asacompiler
or linker) to build one or more targets. Note that thisis not the same as the external environment (see above). See
Section 7.3, “Controlling the Execution Environment for Issued Commands’, below.

Unlike Make, SCons does not automatically copy or import val ues between different environments (with the exception
of explicit clones of construction environments, which inherit the values from their parent). Thisisadeliberate design
choice to make sure that builds are, by default, repeatable regardless of the values in the user's external environment.
This avoids a whole class of problems with builds where a developer's local build works because a custom variable
setting causes a different compiler or build option to be used, but the checked-in change breaks the official build
because it uses different environment variable settings.

Note that the SConscr i pt writer can easily arrange for variables to be copied or imported between environments,
and this is often very useful (or even downright necessary) to make it easy for developers to customize the build in
appropriate ways. The point is not that copying variables between different environmentsis evil and must aways be
avoided. Instead, it should be up to the implementer of the build system to make conscious choices about how and
when to import avariable from one environment to another, making informed decisions about striking the right balance
between making the build repeatable on the one hand and convenient to use on the other.

Using Values From the External Environment

Sidebar: Python Dictionaries

If you're not familiar with the Python programming language, we need to talk a little bit about the Python
dictionary data type. A dictionary (also known by terms such as mapping, associative array and key-value
store) associates keys with values, such that asking the dict about a key gives you back the associated value
and assigning to a key creates the association - either a new setting if the key was unknown, or replacing the
previous association if the key was already in the dictionary. Vaues can be retrieved using item access (the
key name in square brackets ([])), and dictionaries also provide a method named get which responds with
adefault value, either None or avalue you supply as the second argument, if the key is not in the dictionary,
which avoidsfailing in that case. The syntax for initializing a dictionary uses curly braces ({ }). Here are some
simple examples (inspired by those in the official Python tutorial) using syntax that indicates interacting with
the Python interpreter (>>> isthe interpreter prompt) - you can try these out:

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['gquido'] = 4127

>>> tel['jack']

4098

>>> del tel['sape']

>>> tel['irv'] = 4127

>>> print(tel)

{'jack': 4098, 'quido': 4127, 'irv': 4127}
>>> 'guido’ in tel

Tr ue

>>> print(tel['jack'])

Traceback (nost recent call |ast):
File "<stdin>", line 1, in <nmodul e>

KeyError: 'jack'
>>> print(tel.get('jack'))
None

Construction environments are written to behave like aPython dictionary, and the SENV construction variablein
aconstruction environment isaPython dictionary. The0os. envi r on value that Python usesto make available
the external environment is also a dictionary. We will need these concepts in this chapter and throughout the
rest of this guide.

7.1. Using Values From the External
Environment

The external environment variable settings that the user hasin force when executing SCons are available in the Python
0s. envi ron dictionary. That syntax means the envi r on attribute of the os module. In Python, to access the
contents of amoduleyou must firsti npor t it-soyouwouldincludethei nport os statementtoany SConscri pt
file in which you want to use values from the user's external environment.

i mport os

print("Shell is", os.environ['SHELL'])

b4

SCONS 41

Construction Environments

More usefully, you can use the 0s. envi ron dictionary in your SConscri pt files to initialize construction
environments with values from the user's external environment. Read on to the next section for information on how
to do this.

7.2. Construction Environments

It israre that all of the softwarein alarge, complicated system needs to be built exactly the same way. For example,
different source files may need different options enabled on the command line, or different executable programs need
to be linked with different libraries. SCons accommodates these different build requirements by allowing you to create
and configure multiple construction environments that control how the softwareis built. A construction environment
isan object that has anumber of associated construction variables, each with aname and avalue, just like adictionary.
(A construction environment also has an attached set of Builder methods, about which we'll learn more later.)

7.2.1. Creating a Construction Environment: the
Envi r onment Function

A construction environment is created by the Envi r onment method:
env = Environnent ()

By default, SConsinitializes every new construction environment with aset of construction variables based on thetools
that it finds on your system, plus the default set of builder methods necessary for using those tools. The construction
variables are initialized with values describing the C compiler, the Fortran compiler, the linker, etc., as well as the
command lines to invoke them.

When you initialize a construction environment you can set the values of the environment's construction variables to
control how a program is built. For example:

env = Environnent (CC=' gcc', CCFLAGS='-Q2')
env. Progran(' foo.c')

The construction environment in this example is still initialized with the same default construction variable values,
except that the user has explicitly specified use of the GNU C compiler gec, and that the - O2 (optimization level two)
flag should be used when compiling the object file. In other words, the explicit initializations of $CC and $CCFLAGS
override the default valuesin the newly-created construction environment. So arun from thisexamplewould look like:

% scons -Q

gcc -0 foo.o -c -2 foo.c
gcc -o foo foo.o

7.2.2. Fetching Values From a Construction Environment

Y ou can fetch individual values, known as Construction Variabl es, using the same syntax used for accessing individual
named itemsin a Python dictionary:

env = Environment ()
print("CCis: %" %env['CC])

Iy
=== SCONS 42

Fetching Values From a Construction Environment

print("LATEX is: %" % env.get (' LATEX , None))

This example SConst r uct file doesn't contain instructions for building any targets, but because it's still a valid
SConst r uct it will be evaluated and the Python pri nt calls will output the values of $CC and SLATEX for us
(remember using the . get () method for fetching means we get a default value back, rather than a failure, if the
variableis not set):

% scons -Q

CCis: cc
LATEX is: None
scons: ' is up to date.

A construction environment is actually an object with associated methods and attributes. If you want to have direct
access to only the dictionary of construction variables you can fetch this using the env. Di cti onary method
(although it'srarely necessary to use this method):

env = Environnent (FOO=' foo', BAR='bar')

cvars = env.Dictionary()

for key in ["OBISUFFI X', 'LIBSUFFI X , 'PROGSUFFI X]:
print("key = %, value = %" % (key, cvars[key]))

This SConst r uct filewill print the specified dictionary items for us on POSIX systems as follows:

% scons -Q

key = OBISUFFI X, value = .0
key = LIBSUFFI X, value = .a
key = PROGSUFFI X, val ue =
scons: ' is up to date.

And on Windows:

C.\>scons -Q

key = OBISUFFI X, val ue = . obj
key = LIBSUFFI X, value = .lib
key = PROGSUFFI X, val ue = .exe
scons: .' is up to date.

If you want to loop and print the values of all of the construction variables in a construction environment, the Python
code to do that in sorted order might look something like:

env = Environnent ()
for itemin sorted(env.Dictionary().itens()):
print("construction variable = '%', value = '"%'" %item

It should be noted that for the previous example, there is actually a construction environment method that does the
same thing more simply, and tries to format the output nicely aswell:

env = Environment ()
print (env. Dunp())

Iy
=== SCONS 43

Expanding Va ues From a Construction Environment: the
subst Method

7.2.3. Expanding Values From a Construction
Environment: the subst Method

Another way to get information from a construction environment is to use the subst method on a string containing

$ expansions of construction variable names. As a simple example, the example from the previous section that used
env[' CC] tofetch the value of $CC could also be written as:

env = Environment ()
print("CCis: %" % env.subst('$CC))

One advantage of using subst to expand stringsisthat construction variablesin the result get re-expanded until there
are no expansions left in the string. So asimple fetch of avalue like $CCCOM

env = Environment (CCFLAGS=' - DFQO)
print("CCCOMis: %" % env[' CCCOM])

Will print the unexpanded value of $CCCOM showing us the construction variables that still need to be expanded:

% scons -Q
CCCOM i s: $CC $CCFLAGS $CPPFLAGS $ CPPDEFFLAGS $ CPPI NCFLAGS -c -0 $TARGET $SOURCES
scons: ~.' is up to date.

Calling the subst method on $CCOM however:

env = Environnent (CCFLAGS=' - DFQO)
print("CCCOMis: %" % env.subst (' $CCCOM))

Will recursively expand all of the construction variables prefixed with $ (dollar signs), showing us the final outpuit:

% scons -Q
CCCOM is: gcc -DFOO -c -0
scons: ~.' is up to date.

Note that because we're not expanding this in the context of building something there are no target or source files for
$TARGET and $SOURCES to expand.

7.2.4. Handling Problems With Value Expansion

If a problem occurs when expanding a construction variable, by default it is expandedto' ' (an empty string), and
will not cause scons to fail.

env = Environmnent ()
print("value is: 9%"% nv.subst('->$M SSI NG-'))

Iy
=== SCONS 44

Contralling the Default Construction Environment: the
Def aul t Envi ronnment Function

% scons -Q
val ue is: -><-
scons: ' is up to date.

This default behaviour can be changed using the Al | owSubst Except i ons function. When a problem occurswith
avariable expansion it generates an exception, and the Al | owSubst Except i ons function controlswhich of these
exceptions are actually fatal and which are allowed to occur safely. By default, NaneEr r or and | ndexEr r or are
the two exceptionsthat are allowed to occur: soinstead of causing sconsto fail, these are caught, the variable expanded
to' ' and scons execution continues. To require that all construction variable names exist, and that indexes out of
range are not allowed, call Al | owSubst Except i ons with no extra arguments.

Al | owSubst Except i ons()
env = Environnent ()
print("value is: 9%"%nv.subst('->$M SSI NG-'))

% scons -Q

scons: *** NaneError "nane 'M SSING is not defined trying to evaluate *$M SSI NG
File "/home/ ny/ project/SConstruct”, line 3, in <nmodul e>

This can aso be used to allow other exceptions that might occur, most usefully with the ${. ..} construction
variable syntax. For example, thiswould allow zero-division to occur in avariable expansion in addition to the default
exceptions alowed

Al | owSubst Except i ons(| ndexError, NanmeError, ZeroDi visionError)
env = Environnent ()
print("value is: %"%nv.subst('->${1 / 0}<-'))

% scons -Q
val ue is: -><-
scons: ' is up to date.

If Al | owSubst Excepti ons iscalled multiple times, each call completely overwrites the previous list of allowed
exceptions.

7.2.5. Controlling the Default Construction Environment:
the Def aul t Envi ronnent Function

All of the Builder functionsthat we'veintroduced sofar, likePr ogr amandLi br ar y, useaconstruction environment
that contains settings for the various compilers and other tools that SCons configures by default, or otherwise knows
about and has discovered on your system. If not invoked as methods of a specific construction environment, they use
the default construction environment The goal of the default construction environment isto make many configurations
"just work" to build software using readily available tools with a minimum of configuration changes.

If needed, you can control the default construction environment by using the Def aul t Envi r onnment function to
initialize various settings by passing them as keyword arguments:

Def aul t Envi ronment (CC='/ usr/ | ocal / bi n/ gcc')

Iy
=== SCONS 45

Multiple Construction Environments

When configured as above, all calls to the Pr ogr amor Obj ect Builder will build object files with the / usr/
| ocal / bi n/ gcc compiler.

The Def aul t Envi r onnment function returns the initialized default construction environment object, which can
then be manipulated like any other construction environment (note that the default environment works like asingleton
- it can have only one instance - so the keyword arguments are processed only on thefirst call. On any subsequent call
the existing object isreturned). So the following would be equival ent to the previous example, setting the $CCvariable
to/ usr/ 1 ocal / bi n/ gcc but as a separate step after the default construction environment has been initialized:

def _env = Defaul t Envi ronnment ()
def _env['CC] = '/usr/local/bin/gcc'

One very common use of the Def aul t Envi r onnment functionisto speed up SConsinitialization. As part of trying
to make most default configurations "just work," SCons will actually search the local system for installed compilers
and other utilities. This search can take time, especially on systems with slow or networked file systems. If you know
which compiler(s) and/or other utilities you want to configure, you can control the search that SCons performs by
specifying some specific tool modules with which to initialize the default construction environment:

def _env = Defaul t Envi ronment (tool s=['gcc', 'gnulink'], CC='/usr/local/bin/gcc')

So the above examplewouldtell SConsto explicitly configure thedefault environment to useitsnorma GNU Compiler
and GNU Linker settings (without having to search for them, or any other utilities for that matter), and specifically to
use the compiler found at / usr/ | ocal / bi n/ gcc.

7.2.6. Multiple Construction Environments

The real advantage of construction environments is that you can create as many different ones as you need, each
tailored to a different way to build some piece of software or other file. If, for example, we need to build one program
with the - O2 flag and another with the - g (debug) flag, we would do thislike so:

opt
dbg

Envi r onment (CCFLAGS=' - Q2")
Envi r onnent (CCFLAGS=' -g')

opt. Program(' foo', 'foo.c')

dbg. Program(' bar', 'bar.c')

% scons -Q

CC -0 bar.o -c -g bar.c
CC -0 bar bar.o

cc -o foo.o -c -2 foo.c
cc -o foo foo.o

We can even use multiple construction environments to build multiple versions of asingle program. If you do this by

simply trying to use the Pr ogr ambuilder with both environments, though, like this:

opt
dbg

Envi ronnent (CCFLAGS=' - 2")
Envi r onnment (CCFLAGS=' - g')

Iy
=== SCONS 46

Making Copies of Construction Environments; the
Cl one Method

opt. Program(' foo', 'foo.c')

dbg. Program(* foo', 'foo.c')

Then SCons generates the following error:

% scons -Q

scons: *** Two environnents with different actions were specified for the same target:

File "/home/ ny/ project/SConstruct”, line 6, in <nmodul e>

Thisis because thetwo Pr ogr amcalls have each implicitly told SCons to generate an object file named f 0o. o, one
with a $CCFLAGS value of - @2 and one with a $CCFLAGS value of - g. SCons can't just decide that one of them
should take precedence over the other, so it generates the error. To avoid this problem, we must explicitly specify that
each environment compilef 0o. ¢ to a separately-named object file using the Cbj ect builder, like so:

opt = Environnent (CCFLAGS=' - Q2')
dbg = Envi ronnment (CCFLAGS=' -g')
o = opt.bject('foo-opt’', 'foo.c')

opt . Progr an(o)

d = dbg. Obj ect (' foo-dbhg', 'foo.c')
dbg. Pr ogr an(d)

Notice that each call to the Cbj ect builder returns a value, an internal SCons object that represents the object file
that will be built. We then use that object as input to the Pr ogr ambuilder. This avoids having to specify explicitly
the object file namein multiple places, and makes for acompact, readable SConst r uct file. Our SCons output then
looks like:

% scons -Q

cc -o foo-dbg.o -c -g foo.c
cc -o foo-dbg foo-dbg. o

cc -o foo-opt.o -c -2 foo.c
cc -o foo-opt foo-opt.o

7.2.7. Making Copies of Construction Environments: the
Cl one Method

Sometimes you want more than one construction environment to share the same values for one or more variables.
Rather than always having to repeat all of the common variables when you create each construction environment, you
can usetheenv. C one method to create a copy of a construction environment.

Likethe Envi r onnment call that creates a construction environment, the Gl one method takes construction variable
assignments, which will override the values in the copied construction environment. For example, suppose we want
to use gcc to create three versions of a program, one optimized, one debug, and one with neither. We could do this
by creating a "base" construction environment that sets $CC to gcc, and then creating two copies, one which sets
$CCFLAGS for optimization and the other which sets $CCFLAGS for debugging:

env = Environment (CC=' gcc')

Iy
=== SCONS 47

foo

Replacing Vaues: the Repl ace Method

opt = env. C one(CCFLAGS="-Q2")

dbg = env. d one(CCFLAGS="-g')

env. Program(' foo', 'foo.c')

o = opt.hject('foo-opt', 'foo.c')

opt . Progr an(o)

d = dbg. Obj ect (' foo-dbg', 'foo.c')
dbg. Progr am(d)

Then our output would look like:

% scons -Q

gcc -o foo.o -c foo.c

gcc -o foo foo.o

gcc -o foo-dbg.o -c -g foo.c
gcc -o foo-dbg foo-dbg.o

gcc -o foo-opt.o -c -2 foo.c
gcc -o foo-opt foo-opt.o

7.2.8. Replacing Values: the Repl ace Method

Y ou can replace existing construction variable values using the env. Repl ace method:

env = Environment (CCFLAGS=' - DDEFI NE1')
env. Repl ace(CCFLAGS=' - DDEFI NE2')
env. Progran(' foo.c')

The replacing value (- DDEFI NE2 in the above example) completely replaces the value in the construction
environment:

% scons -Q
cc -o foo.o -c -DDEFI NE2 foo.cC
cc -o foo foo.o

You can safely call Repl ace for construction variables that don't exist in the construction environment:

env = Environnent ()
env. Repl ace(NEW VARI ABLE=' xyzzy')
print (" NEW. VARl ABLE = %" % env[' NEW VARI ABLE'])

In this case, the construction variable simply gets added to the construction environment:

% scons -Q
NEW VARI ABLE = xyzzy
scons: ' is up to date.

Because the variables aren't expanded until the construction environment is actually used to build the targets, and
because SCons function and method calls are order-independent, the last replacement "wins' and is used to build all
targets, regardless of the order in which the calls to Replace() are interspersed with callsto builder methods:

Iy
=== SCONS 48

Setting Values Only If They're Not Already Defined: the
Set Def aul t Method

env = Environment (CCFLAGS=" - DDEFI NE1')
print (" CCFLAGS = %" % env[' CCFLAGS'])
env. Program(' foo.c')

env. Repl ace(CCFLAGS=" - DDEFI NE2')
print (" CCFLAGS = %" % env[' CCFLAGS'])
env. Program(' bar.c')

The timing of when the replacement actually occurs relative to when the targets get built becomes apparent if we run
scons without the - Qoption:

% scons

scons: Readi ng SConscript files ...
CCFLAGS = - DDEFI NE1

CCFLAGS = - DDEFI NE2

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 bar.o -c -DDEFINE2 bar.c

cc -0 bar bar.o

cc -o foo.o -c -DDEFI NE2 foo.cC

cc -o foo foo.o0

scons: done buil ding targets.

Because the replacement occurs while the SConscr i pt files are being read, the $CCFLAGS variable has aready

been set to - DDEFI NE2 by the time the f 00. o0 target is built, even though the call to the Repl ace method does
not occur until later in the SConscri pt file.

7.2.9. Setting Values Only If They're Not Already Defined:
the Set Def aul t Method

Sometimesit's useful to be able to specify that a construction variable should be set to avalue only if the construction
environment does not already have that variable defined Y ou can do thiswiththeenv. Set Def aul t method, which
behaves similarly to the set def aul t method of Python dictionary objects:

env. Set Def aul t (SPECI AL_FLAG=' - extra-option')

Thisis especialy useful when writing your own Tool modulesto apply variables to construction environments.

7.2.10. Appending to the End of Values: the Append
Method

Y ou can append avalue to an existing construction variable using the env. Append method:

env = Environnment (CPPDEFI NES=[' MY_VALUE'])
env. Append(CPPDEFI NES=[' LAST'])
env. Progran(' foo.c')

Iy
=== SCONS 49

Appending Unique Values: the AppendUni que Method

Note $CPPDEFI NES is the preferred way to set preprocessor defines, as SCons will generate the command line
arguments using the correct prefix/suffix for the platform, leaving the usage portable. If you use $CCFLAGS and
$SHCCFLAGS, you need to include them in their final form, which isless portable.

% scons -Q
cc -o foo.o -c -DWMY_VALUE -DLAST foo.c
cc -o foo foo.o0

If the construction variable doesn't already exist, the Append method will create it:

env = Environnent ()

env. Append(NEW VARI ABLE = ' added')

print (" NEW.VARI ABLE = %" %env[' NEW VARI ABLE'])
Which yields:

% scons -Q
NEW VARI ABLE = added
scons: .' is up to date.

Note that the Append function tries to be "smart" about how the new value is appended to the old value. If both are

strings, the previous and new strings are simply concatenated. Similarly, if both are lists, the lists are concatenated. If,
however, oneisastring and the other isalist, the string is added as a new element to the list.

7.2.11. Appending Unique Values: the AppendUni que
Method

Sometimes it's useful to add a new value only if the existing construction variable doesn't already contain the value.
This can be done using theenv. AppendUni que method:

env. AppendUni que(CCFLAGS=['-g'])

In the above example, the - g would be added only if the $CCFLAGS variable does not aready contain a- g value.

7.2.12. Prepending to the Beginning of Values: the
Pr epend Method

Y ou can prepend a value to the beginning of an existing construction variable using the env. Pr epend method:

env = Envi r onnent (CPPDEFI NES=[' MY_VALUE'])
env. Prepend(CPPDEFI NES=[' FI RST'])
env. Progran(' foo.c')

SCons then generates the preprocessor define arguments from CPPDEFI NES values with the correct prefix/suffix.
For example on Linux or POSI X, the following arguments would be generated: - DFI RST and - DMY_VALUE

% scons -Q

Iy
=== SCONS 50

Prepending Unique Values: the Pr ependUni que
Method

cc -o foo.o -c -DFI RST - DMY_VALUE f oo. c
cc -o foo foo.o

If the construction variable doesn't already exist, the Pr epend method will createit:

env = Environnent ()
env. Prepend(NEW_VARI ABLE=' added')
print ("NEW VARI ABLE = %" % env[' NEW VARI ABLE' |)

Which yields:

% scons -Q
NEW VARI ABLE = added
scons: ~.' is up to date.

Likethe Append function, the Pr epend function triesto be "smart" about how the new value is appended to the old
value. If both are strings, the previous and new strings are simply concatenated. Similarly, if both arelists, thelistsare
concatenated. If, however, one is a string and the other isalist, the string is added as a new element to the list.

7.2.13. Prepending Unique Values: the PrependUni que
Method

Sometimesit's useful to add a new value to the beginning of a construction variable only if the existing value doesn't
already contain the to-be-added value. This can be done using theenv. Pr ependUni que method:

env. PrependUni que(CCFLAGS=['-g'])

In the above example, the - g would be added only if the $CCFLAGS variable does not already contain a- g value.

7.2.14. Overriding Construction Variable Settings

Rather than creating a cloned construction environment for specific tasks, you can override or add construction
variables when calling a builder method by passing them as keyword arguments. The values of these overridden or
added variableswill only bein effect when building that target, and will not affect other parts of the build. For example,
if you want to add additional libraries for just one program:

env. Program(' hello', "hello.c', LIBS=['gl"', "glut'])
or generate a shared library with a non-standard suffix:

env. Shar edLi brar y(
target="word",
sour ce="'word. cpp’,
SHLI BSUFFI X=' . ocx' ,
LI BSUFFI XES=[" . ocx'],

Iy
=== SCONS 51

Controlling the Execution Environment for | ssued
Commands

When overriding this way, the Python keyword arguments in the builder call mean "set to this value". If you want
your override to augment an existing value, you have to take some extra steps. Inside the builder call, it is possible to
substitute in the existing value by using a string containing the variable name prefaced by a dollar sign ($).

env = Environnment (CPPDEFI NES="FQOO'")

env. Qbj ect (target ="fool.0", source="foo.c")

env. Qbj ect (target="fo002. 0", source="foo.c", CPPDEFI NES="BAR")

env. Qoj ect (target ="fo003. 0", source="foo.c", CPPDEFINES=["BAR', "$CPPDEFINES"])

Which yields:

% scons -Q

cc -o fool.o -c -DFQO foo.c

cc -o foo2.0 -c -DBAR foo.c

cc -o foo3.0 -c -DBAR - DFQO foo.c

Itisalso possibletousethepar se_f | ags keyword argument in an override to merge command-line style arguments
into the appropriate construction variables. This works like the env. Mer geFl ags method, which will be fully
described in the next chapter.

This example adds 'include’ to $CPPPATH, 'EBUG' to $CPPDEFI NES, and 'm’ to $LI BS:

env = Environnent ()
env. Program(' hell o', "hello.c', parse flags='-1include -DEBUG -1n)

So when executed:

% scons -Q
cc -0 hello.o -¢c -DEBUG -1include hello.c
cc -o hello hello.o -Im

Using temporary overrides this way is lighter weight than making a full construction environment, so it can help
performance in large projects which have lots of specia case values to set. However, keep in mind that this only
works well when the targets are unique. Using builder overrides to try to build the same target with different sets of
flags or other construction variables will lead tothescons: *** Two environnents with different
actions. .. error described in Section 7.2.6, “Multiple Construction Environments’ above. In this case you will
actually want to create separate environments.

7.3. Controlling the Execution Environment for
Issued Commands

When SCons builds a target file, it does not execute the commands with the external environment that you used to
execute SCons. Instead, it builds an execution environment from the values stored in the SENV construction variable
and uses that for executing commands.

The most important ramification of this behavior is that the PATH environment variable, which controls where the
operating system will look for commands and utilities, will aimost certainly not be the same as in the external
environment from which you called SCons. This means that SCons might not necessarily find all of the toolsthat you
can successfully execute from the command line.

Iy
=== SCONS 52

Propagating PATH From the External Environment

The default value of the PATH environment variable on a POSIX system is/ usr/ | ocal / bi n:/opt/bin:/

bi n: / usr/ bi n: / snap/ bi n. The default value of the PATH environment variable on a Windows system comes
from the Windows registry value for the command interpreter. If you want to execute any commands--compilers,
linkers, etc.--that are not in these default locations, you need to set the PATH value in the $ENV dictionary in your
construction environment.

The ssimplest way to do thisisto initialize explicitly the value when you create the construction environment; thisis
one way to do that:

path = ["/usr/local/bin', "/bin', "/usr/bin']
env = Environment (ENV={' PATH : pat h})

Assigning adictionary to the $ENV construction variable in this way completely resets the execution environment, so
that the only variable that will be set when external commands are executed will be the PATH value. If you want to
use therest of the valuesin $ENV and only set the value of PATH, you can assign a value only to that variable:

env['ENV J]['PATH] = ['/usr/local/bin', '/bin', '/usr/bin']

Notethat SCons does allow you to define the directoriesin the PATH in a string with paths separated by the pathname-
separator character for your system (* : ' on POSIX systems,' ;' on Windows).

env['ENV][' PATH] = '/usr/local/bin:/bin:/usr/bin'

But doing so makesyour SConscr i pt filelessportable, sinceit will be correct only for the system type that matches
the separator. Y ou can use the Python os. pat hsep for for greater portability - don't worry too much if this Python
syntax doesn't make sense since there are other ways available:

i mport os
env['ENV][' PATH] = os.pathsep.join(['/usr/local/bin', '/bin', "/fusr/bin'])

7.3.1. Propagating PATH From the External Environment

Y ou may want to propagate the external environment PATH to the execution environment for commands. Y ou do this
by initializing the PATH variable with the PATH value from the os. envi r on dictionary, which is Python's way of
letting you get at the external environment:

i mport os
env = Environment (ENV={' PATH : os.environ[' PATH]})

Alternatively, you may find it easier to just propagate the entire external environment to the execution environment
for commands. Thisis simpler to code than explicity selecting the PATH value:

i mport os
env = Environment (ENV=0s. envi ron. copy())

Iy
=== SCONS 53

Adding to PATH Values in the Execution Environment

Either of these will guarantee that SConswill be able to execute any command that you can execute from the command
line. The drawback is that the build can behave differently if it's run by people with different PATH values in their
environment--for example, if both the/ bi nand/ usr/ | ocal / bi n directories have different cc commands, then
which one will be used to compile programs will depend on which directory islisted first in the user's PATH variable.

7.3.2. Adding to PATH Values in the Execution
Environment

One of the most common requirements for manipulating avariable in the execution environment isto add one or more
custom directoriesto apath search variable like PATHon Linux or POSIX systems, or %°ATHY0on Windows, so that a
locally-installed compiler or other utility can befound when SConstriesto executeit to update atarget. SCons provides
env. PrependENVPat h and env. AppendENVPat h functions to make adding things to execution variables
convenient. You call these functions by specifying the variable to which you want the value added, and then value
itself. Soto add some/ usr/ | ocal directoriesto the $SPATHand $LI B variables, you might:

env = Envi ronnent (ENV=0s. envi ron. copy())
env. PrependENVPat h(' PATH , '/usr/local /bin")
env. AppendENVPat h(' LIB', '/usr/local/lib")

Note that the added values are strings, and if you want to add multiple directories to avariable like $PATH, you must
include the path separator character in the string (: on Linux or POSIX, ; on Windows, or use 0s. pat hsep for
portability).

7.4. Using the toolpath for external Tools
7.4.1. The default tool search path

Normally when using a tool from the construction environment, several different search locations are checked
by default. This includes the SCons/ Tool s/ directory that is part of the scons distribution and the directory
site_scons/site_tool s relaivetotheroot SConst r uct file.

Builtin tool or tool located within site tools
env = Environnent (t ool s=[' SoneTool '])
env. SoneTool (targets, sources)

The search | ocati ons woul d include by default
SCons/ Tool / SoneTool . py

SCons/ Tool / SomeTool / _init__.py
./site_scons/site_tool s/ SoneTool . py
./site_scons/site _tool s/SoneTool/ _init__.py

7.4.2. Providing an external directory to toolpath

In some cases you may want to specify adifferent location to search for tools. The Envi r onnment function contains
an option for thiscalled t ool pat h This can be used to add additional search directories.

Tool located within the tool path directory option

Iy
=== SCONS 54

Nested Tools within atoolpath

env = Environment (

t ool s=[' SomeTool '],

t ool pat h=["' / opt/ SomeTool Pat h', '/opt/ SomeTool Pat h2']
)

env. SomeTool (targets, sources)

The search locations in this exanple woul d incl ude:
/ opt / SomeTool Pat h/ SomeTool . py

[opt / SomeTool Pat h/ SomeTool / __init__. py

[opt / SomeTool Pat h2/ SoneTool . py

[opt / SomeTool Pat h2/ SoneTool / __init__.py

SCons/ Tool / SomeTool . py

SCons/ Tool / SomeTool / __init__. py
./site_scons/site_tool s/ SoneTool . py
./site_scons/site_tool s/SoneTool/ __init__.py

7.4.3. Nested Tools within a toolpath

Since SCons 3.0, a Builder may be located within a sub-directory / sub-package of the toolpath. Thisis similar to
namespacing within Python. With nested or namespaced tools we can use the dot notation to specify a sub-directory
that the tool is located under.

namespaced t ar get

env = Environment (
t ool s=[' SubDi r 1. SubDi r 2. SoneTool '],
t ool pat h=["' / opt / SomeTool Pat h']

)

env. SomeTool (targets, sources)

Wth this exanple the search | ocations woul d incl ude

[opt / SomeTool Pat h/ SubDi r 1/ SubDi r 2/ SomeTool . py

[opt / SomeTool Pat h/ SubDi r 1/ SubDi r 2/ SomeTool / __init__. py
SCons/ Tool / Subbi r 1/ SubbDi r 2/ SomeTool . py

SCons/ Tool / SubDi r 1/ SubDi r 2/ SomeTool / __init__. py
./site_scons/site_tool s/SubDir1/ SubDir2/ SoneTool . py
./site_scons/site_tool s/SubDir1/ SubDir2/ SoneTool/__init__.py

7.4.4. Using sys.path within the toolpath

If wewant to accesstoolsexternal to sconswhich arefindableviasys. pat h (for example, toolsinstalled viaPython's
pip package manager), itispossibletousesys. pat h with thetool path. Onething to watch out for with this approach
isthat sys. pat h can sometimes contains paths to . egg files instead of directories. So we need to filter those out
with this approach.

namespaced target using sys.path within tool path

searchpaths = []
for itemin sys.path:
if os.path.isdir(item:
sear chpat hs. append(iten

Iy
=== SCONS 55

Using the PyPackageDi r function to add to the
toolpath

env = Environment (
t ool s=[' sonei nst al | edpackage. SoneTool '],
t ool pat h=sear chpat hs

)

env. SomeTool (targets, sources)

By using sys. pat h with the toolpath argument and by using the nested syntax we can have scons search packages
installed via pip for Tools.

For W ndows based on the python version and install directory, this may be sonmething lik
C:\ Pyt hon35\ Li b\ si t e- packages\ sonei nst al | edpackage\ SoneTool . py
C:\ Pyt hon35\ Li b\ si t e- packages\ sonei nst al | edpackage\ SomeTool\ _init__.py

For Linux this could be sonething |ike:
[usr/1ib/python3/di st-packages/ sonei nst al | edpackage/ SonmeTool . py
[fusr/1ib/python3/di st-packages/ sonei nst al | edpackage/ SomeTool / __init__.py

7.4.5. Using the PyPackageDi r function to add to the
toolpath

In some cases you may want to use atool located within ainstalled external pip package. Thisis possible by the use
of sys. pat h with the toolpath. However in that situation you need to provide a prefix to the toolname to indicate
whereit islocated within sys. pat h.

searchpaths = []
for itemin sys.path:
if os.path.isdir(item:
sear chpat hs. append(iten)
env = Environment (
t ool s=[' t ool s_exanpl e. subdi r 1. subdi r 2. SoneTool '],
t ool pat h=sear chpat hs

)

env. SomeTool (targets, sources)

To avoid the use of a prefix within the name of the tool or filtering sys. pat h for directories, we can use
PyPackageDi r functiontolocate the directory of the python package. PyPackageDi r returnsaDir object which
represents the path of the directory for the python package / module specified as a parameter.

nanmespaced target using sys.path
env = Environment (

t ool s=[' SoneTool '],

t ool pat h=[PyPackageDi r (' t ool s_exanpl e. subdi r 1. subdi r2')]
)

env. SoneTool (targets, sources)

Iy
=== SCONS 56

8 Automatically Putting

Command-line Options into
their Construction Variables

This chapter describes the Mer geFl ags, Par seFl ags, and Par seConfi g methods of a construction
environment, aswell asthepar se_f | ags keyword argument to methods that construct environments.

8.1. Merging Options into the Environment: the
Mer geFl ags Function

SCons construction environments have a Mer geFl ags method that merges values from a passed-in argument into
the construction environment. If the argument is a dictionary, Mer geFl ags treats each value in the dictionary as a
list of optionsyou would passto acommand (such asacompiler or linker). Mer geFl ags will not duplicate an option
if it already exists in the construction variable. If the argument is a string, Mer geFl ags calls the Par seFl ags
method to burst it out into a dictionary first, then acts on the result.

Mer geFl ags tries to be intelligent about merging options, knowing that different construction variables may have
different needs. When merging options to any variable whose nhame ends in PATH, Mer geFl ags keepsthe leftmost
occurrence of the option, becausein typical lists of directory paths, the first occurrence "wins." When merging options
to any other variable name, Mer geFl ags keeps the rightmost occurrence of the option, because in alist of typical
command-line options, the last occurrence "wins."

env = Environnent ()

env. Append(CCFLAGS=" -option -O3 -O1')
flags = {' CCFLAGS : '-whatever -O3'}
env. Mer geFl ags(fl ags)

print (" CCFLAGS: ", env[' CCFLAGS])

% scons -Q
CCFLAGS: ['-option', '-0O1', '-whatever', '-Q3']
scons: ~.' is up to date.

Note that the default value for $CCFLAGS is an internal SCons object which automatically converts the options you
specify asastring into alist.

Merging Options While Creating Environment: the
par se_f | ags Parameter

env = Environment ()

env. Append(CPPPATH=["' /i nclude', '/usr/local/include', '/usr/include'])
flags = {" CPPPATH : ['/usr/opt/include', '/usr/local/include']}

env. Mer geFl ags(fl ags)

print (" CPPPATH:. ", env[' CPPPATH])

% scons -Q
CPPPATH: ['/include', '/usr/local/include', '/usr/include', '/usr/opt/include']
scons: ".' is up to date.

Notethat thedefault valuefor $CPPPATHisanormal Pythonlist, so you should giveitsvaluesasalist inthedictionary
you pass to the Mer geFl ags function.

If Mer geFl ags is passed anything other than a dictionary, it calls the Par seFl ags method to convert it into a
dictionary.

env = Environment ()

env. Append(CCFLAGS="' -option -G8 -0O1')

env. Append(CPPPATH=["' /i nclude', '/usr/local/include', '/usr/include'])
env. Mer geFl ags(' -whatever -1/usr/opt/include -O3 -1/usr/local/include')
print("CCFLAGS: ", env[' CCFLAGS])

print (" CPPPATH:. ", env[' CPPPATH])

% scons -Q

CCFLAGS: ['-option', '-0O1', '-whatever', '-Q3']

CPPPATH: ['/include', '/usr/local/include', '/usr/include', '/usr/opt/include']
scons: ~.' is up to date.

In the combined example above, Par seFl ags has sorted the optionsinto their corresponding variables and returned
adictionary for Mer geFl ags to apply to the construction variables in the specified construction environment.

8.2. Merging Options While Creating
Environment: the parse_fl ags Parameter

It isalso possible to merge construction variable values from arguments given to the Envi r onnent call itself. If the
par se_f | ags keyword argument is given, its value is distributed to construction variables in the new environment
in the same way as described for the Mer geFl ags method. This aso works when calling env. C one, aswell as
in overrides to builder methods (see Section 7.2.14, “Overriding Construction Variable Settings”).

env = Environnent (parse flags="-1/opt/include -L/opt/lib -1foo")
for k in ('CPPPATH , 'LIBPATH , 'LIBS):

print("%:" %k, env.get(k))
env. Program(“f1.c")

% scons -Q

CPPPATH: ['/opt/include']
LI BPATH: ['/opt/lib']
LIBS: ['foo0']

Iy
=== SCONS 58

Separating Compile Argumentsinto their Variables: the
Par seFl ags Function

cc -ofl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

8.3. Separating Compile Arguments into their
Variables: the Par seFl ags Function

SCons has a bewildering array of construction variables for different types of options when building programs.
Sometimes you may not know exactly which variable should be used for a particular option.

SCons construction environments have aPPar seFl ags method that takes a set of typical command-line options and
distributes them into the appropriate construction variables Historically, it was created to support the Par seConf i g
method, so it focuses on options used by the GNU Compiler Collection (GCC) for the C and C++ toolchains.

Par seFl ags returns a dictionary containing the options distributed into their respective construction variables.
Normally, thisdictionary would then be passed to Mer geFl ags to mergethe optionsinto aconstruction environment,
but the dictionary can be edited if desired to provide additional functionality. (Note that if the flags are not going to
be edited, calling Mer geFl ags with the options directly will avoid an additional step.)

env = Environnent ()
d = env. ParseFl ags("-1/opt/include -L/opt/lib -1foo")
for k, vin sorted(d.itens()):
if v:
print(k, v)
env. Mer geFl ags(d)
env. Program(“f1.c")

% scons -Q

CPPPATH [/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -o fl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

Notethat if the options are limited to generic typeslike those above, they will be correctly translated for other platform
types:

C.\>scons -Q

CPPPATH ['/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cl /Fofl.obj /c fl1.c /nologo /I\opt\include

link /nologo /QUT: f1.exe /LIBPATH: \opt\lib foo.lib f1.obj
enmbedMani f est ExeCheck(target, source, env)

Since the assumption is that the flags are used for the GCC toolchain, unrecognized flags are placed in $CCFLAGS
so they will be used for both C and C++ compiles:

env = Environment ()
d = env. Par seFl ags("-what ever")
for k, vin sorted(d.itens()):
if wv:
print(k, v)

Iy
=== SCONS 59

Finding Installed Library Information: the
Par seConf i g Function

env. Mer geFl ags(d)
env. Program("f1.c")

% scons -Q

CCFLAGS - what ever

cc -o fl.o -c -whatever fl.c
cc -ofl fl.o

Par seFl ags will also accept a(recursive) list of stringsasinput; thelist isflattened before the strings are processed:

env = Environnent ()

d = env. ParseFl ags(["-I/opt/include", ["-L/opt/lib", "-1fo0"]])
for k, vin sorted(d.itens()):
if v
print(k, v)

env. Mer geFl ags(d)
env. Program(“f1.c")

% scons -Q

CPPPATH ['/opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -o fl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

If a string begins with a an exclamation mark (!), the string is passed to the shell for execution. The output of the
command is then parsed:

env = Environment ()

d = env. ParseFl ags(["!echo -1/opt/include", "!echo -L/opt/lib", "-1fo0"])
for k, v in sorted(d.itens()):
if v
print(k, v)

env. Mer geFl ags(d)
env. Program("f1.c")

% scons -Q

CPPPATH ['/ opt/i ncl ude']

LI BPATH ['/opt/lib']

LIBS ['foo']

cc -ofl.o-c -l/opt/include fl.c
cc -oflfl.o-L/opt/lib -1foo

Par seFl ags isregularly updated for new options; consult the man page for details about those currently recognized.

8.4. Finding Installed Library Information: the
Par seConf i g Function

Configuring the right options to build programs to work with libraries--especially shared libraries--that are available
on POSIX systems can be complex. To help this situation, various utilies with names that end in conf i g return

Iy
=== SCONS 60

Finding Installed Library Information: the
Par seConf i g Function

the command-line options for the GNU Compiler Collection (GCC) that are needed to build and link against those
libraries; for example, the command-line optionsto usealibrary named | i b could befound by calling a utility named
lib-config.

A more recent convention is that these options are available through the generic pkg-config program, providing a
common framework, error handling, and the like, so that all the package creator has to do is provide the set of strings
for his particular package.

SCons construction variableshave aPar seConf i g method that asksthe host system to execute acommand and then
configures the appropriate construction variables based on the output of that command. This lets you run a program
like pkg-config or amore specific utility to help set up your build.

env = Environment ()

env[' CPPPATH] = ['/Ilib/comnpat"']

env. ParseConfi g("pkg-config x11 --cflags --1ibs")
print (" CPPPATH:. ", env[' CPPPATH])

SCons will execute the specified command string, parse the resultant flags, and add the flags to the appropriate
environment variables.

% scons -Q
CPPPATH: ['/lib/compat', '/usr/X11l/include']

scons: .' is up to date.

In the example above, SCons has added the include directory to $CPPPATH (Depending upon what other flags are
emitted by the pkg- conf i g command, other variables may have been extended as well.)

Note that the options are merged with existing options using the Mer geFl ags method, so that each option only
occurs once in the construction variable.

env = Environnent ()

env. Par seConfi g("pkg-config x11 --cflags --1ibs")
env. Par seConfi g("pkg-config x11 --cflags --1ibs")
print ("CPPPATH ", "CPPPATH ", env[' CPPPATH])

% scons -Q
CPPPATH: ['/usr/X11/i ncl ude']
scons: ~.' is up to date.

Iy
=== SCONS 61

9 Controlling Build Output

A key aspect of creating a usable build configuration is providing useful output from the build so its users can readily
understand what the build is doing and get information about how to control the build. SCons provides severa ways
of controlling output from the build configuration to help make the build more useful and understandable.

9.1. Providing Build Help: the Hel p Function

It's often very useful to be able to give users some help that describes the specific targets, build options, etc., that can
be used for your build. SCons provides the Hel p function to allow you to specify this help text:

Hel p("""
Type: 'scons programi to build the production program
'scons debug' to build the debug version.

")
Optionally, you can specify the append flag:

Hel p("""
Type: 'scons programi to build the production program
'scons debug' to build the debug version.
", append=True)

(Note the above use of the Python triple-quote syntax, which comes in very handy for specifying multi-line strings
like help text.)

When the SConst ruct or SConscri pt files contain acall to the Hel p function, the specified help text will be
displayed in response to the SCons - h option:

% scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Type: 'scons programli to build the production program
'scons debug' to build the debug version.

Use scons -H for help about SCons built-in comrand-|ine options.

Controlling How SCons Prints Build Commands: the
$* COMSTR Variables

The SConscri pt filesmay contain multiple calls to the Hel p function, in which case the specified text(s) will be
concatenated when displayed. Thisallowsyou to define fragments of help text together with the corresponding feature,
even if spread across multiple SConscr i pt files. In this situation, the order in which the SConscri pt filesare
called will determine the order in which the Hel p functions are called, which will determine the order in which the
various bits of text will get concatenated.

Calling Hel p("text™") overwritesthe help text that otherwise would be collected from any command-line options
defined in AddOpt i on calls. To preserve the AddOpt i on help text, add the append=Tr ue keyword argument
when calling Hel p. This also preserves the option help for the scons command itself. To preserve only the
AddOpt i on help, also add the| ocal _onl y=Tr ue keyword argument. (This only matters the first time you call
Append, on any subsequent calls the text you passed is added to the existing help text).

Another use would be to make the help text conditional on some variable. For example, suppose you only want to
display a line about building a Windows-only version of a program when actually run on Windows. The following
SConst ruct file:

env = Environnent ()
Hel p("\ nType: 'scons programi to build the production program\n")
if env[' PLATFORM] == 'wi n32':
Hel p("\ nType: 'scons w ndebug' to build the Wndows debug version.\n")

Will display the complete help text on Windows:

C.\>scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Type: 'scons programi to build the production program
Type: 'scons wi ndebug' to build the Wndows debug versi on.

Use scons -H for hel p about SCons built-in comrand-1ine options.
But only show the relevant option on aLinux or UNIX system:

% scons -h
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.

Type: 'scons programi to build the production program

Use scons -H for hel p about SCons built-in command-1ine options.

If thereisno Hel p text inthe SConst ruct or SConscri pt files, SConswill revert to displaying its standard list
that describes the SCons command-line options. Thislist is also always displayed whenever the - Hoption is used.

9.2. Controlling How SCons Prints Build
Commands: the $* COMSTR Variables

Sometimes the commands executed to compile object files or link programs (or build other targets) can get very
long, long enough to make it difficult for users to distinguish error messages or other important build output from the

Iy
=== SCONS 63

Controlling How SCons Prints Build Commands: the
$* COMSTR Variables

commands themselves. All of the default $* COMvariables that specify the command lines used to build various types
of target files have a corresponding $* COVBTR variable that can be set to an aternative string that will be displayed
when the target is built.

For example, suppose you want to have SCons display a" Conpi | i ng" message whenever it's compiling an object
file,and a" Li nki ng" when it'slinking an executable. Y ou could writea SConst r uct filethat lookslike:

env = Environnment (CCCOMSTR = " Conpi |l i ng $TARGET",
LI NKCOMSTR = "Li nki ng $TARGET")
env. Program(' foo.c')

Which would then yield the output:

% scons -Q
Conpi i ng foo.o0
Li nki ng foo

SCons performs complete variable substitution on $* COVBTR variables, so they have access to al of the standard
variables like $TARGET $SOURCES, etc., as well as any construction variables that happen to be configured in the
construction environment used to build a specific target.

Of course, sometimesit's still important to be able to see the exact command that SCons will execute to build atarget.
For example, you may simply need to verify that SConsis configured to supply the right options to the compiler, or a
developer may want to cut-and-paste a compile command to add afew options for a custom test.

One common way to give users control over whether or not SCons should print the actual command line or a short,
configured summary is to add support for a VERBOSE command-line variable to your SConst r uct file. A smple
configuration for this might look like:

env = Environment ()
i f ARGUMENTS. get (' VERBOSE') != "'1":
env[' CCCOMSTR] = "Conpiling $TARGET"
env[' LI NKCOMSTR] = "Linki ng $TARGET"
env. Program(' foo.c')

By only setting the appropriate $* COVSTR variablesif the user specifies VERBOSE=1 on the command line, the user
has control over how SCons displays these particular command lines:

% scons -Q
Conpi i ng foo.o0

Li nki ng foo

% scons -Q -c
Rermoved foo. 0
Rermoved f oo

% scons - Q VERBOSE=1
cc -o foo.o -c foo.c
cc -o foo foo.o

Iy
=== SCONS 64

Providing Build Progress Output: the Pr ogr ess
Function

A gentle reminder here: many of the commands for building come in pairs, depending on whether the intent isto build
an object for usein ashared library or not. The command strings mirror this, so it may be necessary to set, for example,
both CCCOMSTR and SHCCCOVSTR to get the desired results.

9.3. Providing Build Progress Output: the
Pr ogr ess Function

Another aspect of providing good build output is to give the user feedback about what SCons is doing even when
nothing is being built at the moment. This can be especially true for large builds when most of the targets are already
up-to-date. Because SCons can take a long time making absolutely sure that every target is, in fact, up-to-date with
respect to a lot of dependency files, it can be easy for users to mistakenly conclude that SCons is hung or that there
is some other problem with the build.

One way to deal with this perception isto configure SCons to print something to let the user know what it's "thinking
about." The Progr ess function alows you to specify a string that will be printed for every file that SCons is
"considering” while it is traversing the dependency graph to decide what targets are or are not up-to-date.

Progress(' Eval uati ng $TARGET\n')
Program('fl.c')
Program('f2.c')

Note that the Pr ogr ess function does not arrange for a newline to be printed automatically at the end of the string
(as does the Python pr i nt function), and we must specify the\ n that we want printed at the end of the configured
string. This configuration, then, will have SCons print that it is Eval uat i ng each file that it encountersin turn as
it traverses the dependency graph:

% scons -Q

Eval uati ng SConst r uct
Eval uating f1.c
Eval uating f1.0

cc -o fl.o-c fl.c
Eval uating f1

cc -oflfl.o

Eval uating f2.c
Eval uating f2.0

cc -o f2.0 -c f2.c
Eval uating f2

cc -o f2 f2.0

Eval uating .

Of course, normally you don't want to add all of these additional linesto your build output, asthat can makeit difficult
for the user to find errors or other important messages. A more useful way to display this progress might be to have the
file names printed directly to the user's screen, not to the same standard output stream where build output is printed,
and to use acarriage return character (\ r) so that each file name gets re-printed on the same line. Such a configuration
would look like:

Progress(' $TARGET\ "',

Iy
=== SCONS 65

Providing Build Progress Output: the Pr ogr ess
Function

file=open('/dev/tty', "wW),
overw ite=True)
Program('fl.c')
Program('f2.c')

Note that we also specified the over wri t e=Tr ue argument to the Pr ogr ess function, which causes SCons
to "wipe out" the previous string with space characters before printing the next Pr ogr ess string. Without the
overwr i t e=Tr ue argument, a shorter file name would not overwrite all of the charactesin alonger file name that
precedes it, making it difficult to tell what the actual file name is on the output. Also note that we opened up the /
dev/ tty filefor direct access (on POSIX) to the user's screen. On Windows, the equivalent would be to open the
con: filename.

Also, it'simportant to know that although you can use $TARGET to substitute the name of the node in the string, the
Pr ogr ess function does not perform general variable substitution (because there's not necessarily a construction
environment involved in evaluating a node like a sourcefile, for example).

Y ou can also specify alist of stringsto the Pr ogr ess function, in which case SCons will display each string in turn.
This can be used to implement a"spinner” by having SCons cycle through a sequence of strings:

Progress(['-\r", "\\\r', "|\r", "/\r'], interval =5)
Program('fl.c')
Program('f2.c')

Note that here we have also used thei nt er val = keyword argument to have SCons only print anew "spinner" string
once every five evaluated nodes. Using ani nt er val = count, even with stringsthat use $TARGET like our examples
above, can be a good way to lessen the work that SCons expends printing Pr ogr ess strings, while still giving the
user feedback that indicates SConsiis still working on evaluating the build.

Lastly, you can have direct control over how to print each evaluated node by passing a Python function (or other
Python callable) to the Pr ogr ess function. Y our function will be called for each evaluated node, allowing you to
implement more sophisticated logic like adding a counter:

screen = open('/dev/tty', 'w)
count = 0
def progress_functi on(node)
count += 1
screen.wite(' Node %id: %\r' % (count, node))

Progress(progress_function)

Of course, if you choose, you could completely ignore the node argument to the function, and just print a count, or
anything else you wish.

(Note that there's an obvious follow-on question here: how would you find the total number of nodes that will be
evaluated so you can tell the user how close the build is to finishing? Unfortunately, in the general case, thereisn't a
good way to do that, short of having SCons evaluate its dependency graph twice, first to count the total and the second
timeto actually build the targets. Thiswould be necessary because you can't know in advance which target(s) the user
actually requested to be built. The entire build may consist of thousands of Nodes, for example, but maybe the user
specificaly requested that only a single object file be built.)

Iy
=== SCONS 66

Printing Detailed Build Status: the
CGet Bui | dFai | ur es Function

9.4. Printing Detailed Build Status: the
Get Bui | dFai | ur es Function

SCons, like most build tools, returns zero status to the shell on success and nonzero status on failure. Sometimes it's
useful to give moreinformation about the build status at the end of therun, for instanceto print an informative message,
send an email, or page the poor slob who broke the build.

SConsprovidesaCGet Bui | dFai | ur es method that you can usein apythonat exi t functionto get alist of objects
describing the actions that failed while attempting to build targets. There can be more than one if you're using - j .
Here's asimple example:

i mport atexit

def print _build failures():
from SCons. Scri pt inport GetBuil dFail ures
for bf in GetBuildFailures():
print("% failed: %" % (bf.node, bf.errstr))
atexit.register(print_build fail ures)

Theatexit.register cal registersprint _buil d_failures asanatexit calback, to be called before
SCons exits. When that function is caled, it calls Get Bui | dFai | ur es to fetch the list of failed objects. See the
man page for the detailed contents of the returned objects; some of the more useful attributes are. node, . errstr,
.filenanme,and. comrand. Thefi | enane isnot necessarily the same file asthe node; the node isthe target
that was being built when the error occurred, whilethef i | enaneisthefile or dir that actually caused the error. Note:
only call Get Bui | dFai | ur es at the end of the build; calling it at any other time is undefined.

Here is a more compl ete example showing how to turn each element of Get Bui | dFai | ur es into astring:

Make the build fail if we pass fail=1 on the command |ine
i f ARGUMENTS. get('fail', 0):
Conmand(' target', 'source', ['/bin/false'])

def bf _to_str(bf):

"""Convert an el enent of GetBuil dFailures() to a string

in a useful way."""

i mport SCons. Errors

if bf is None: # unknown targets product None in |ist
return ' (unknown tgt)'

elif isinstance(bf, SCons.Errors. StopError):
return str(bf)

elif bf.node:

return str(bf.node) + ': ' + bf.errstr
elif bf.fil enane:

return bf .filename + ': ' + bf.errstr
return 'unknown failure: ' + bf.errstr

i mport atexit

def build_status():
"""Convert the build status to a 2-tuple, (status, nsg).
from SCons. Scri pt inport GetBuil dFail ures

Iy
=== SCONS 67

Printing Detailed Build Status: the
CGet Bui | dFai | ur es Function

bf = GetBuil dFai |l ures()

i f Dbf:
bf is normally a list of build failures; if an elenent is None,
it's because of a target that scons doesn't know anythi ng about.

status = 'failed
failures_message = "\n".join(["Failed building %" %Dbf_to_str(x)
for x in bf if x is not None])
el se:
if bf is None, the build conpl eted successfully.
status = ' ok’

failures_message =
return (status, failures_nessage)

def display_ build_status():
"""Display the build status. Called by atexit.
Here you could do all kinds of conplicated things."""
status, failures_nessage = buil d_status()

if status == 'failed":
print("FAILED !'I1") # could display alert, ring bell, etc.
elif status == '"ok':

print("Build succeeded. ")
print(failures_nessage)

atexit.register(display_build_status)

When thisruns, you'll see the appropriate output:

% scons -Q

scons: ' is up to date.

Bui | d succeeded.

% scons -Q fail=1

scons: *** [target] Source "source' not found, needed by target “target'.

FAI LED! ! ']

Fail ed building target: Source "“source' not found, needed by target "target'.

Iy
=== SCONS 68

10 Controlling a Build From
the Command Line

SCons provides a number of ways for you as the writer of the SConscr i pt filesto give you (and your users) the
ability to control the build execution. The arguments that can be specified on the command line are broken down into
three types.

Options
Command-line options always begin with one or two - (hyphen) characters. SCons provides ways for you to
examine and set options values from within your SConscr i pt files, aswell as the ability to define your own
custom options. See Section 10.1, “Command-Line Options’, below.

Variables
Any command-line argument containing an = (equal sign) is considered a variable setting with the form
var i abl e=val ue. SCons provides direct access to all of the command-line variable settings, the ability to
apply command-line variable settings to construction environments, and functions for configuring specific types
of variables (Boolean values, path names, etc.) with automatic validation of the specified values. See Section 10.2,
“Command-Linevari abl e=val ue Build Variables’, below.

Targets
Any command-line argument that is not an option or a variable setting (does not begin with a hyphen and does
not contain an equal sign) is considered atarget that the you are telling SCons to build. SCons provides access to
the list of specified targets, as well as ways to set the default list of targets from within the SConscr i pt files.
See Section 10.3, “Command-Line Targets’, below.

10.1. Command-Line Options

SCons has many command-line options that control its behavior. An SCons command-line option always begins with
one or two hyphen (-) characters.

10.1.1. Not Having to Specify Command-Line Options
Each Time: the SCONSFLAGS Environment Variable

Y ou may find yourself using the same command-line options every time you run SCons. For example, you might find
it saves time to specify -j 2 to have SCons run up to two build commands in parallel. To avoid having to type -

i 2 by hand every time, you can set the external environment variable SCONSFLAGS to a string containing-j 2,
as well as any other command-line options that you want SCons to always use. SCONSFLAGS is an exception to the
usual rule that SCons itself avoids looking at environment variables from the shell you are running.

Getting Vaues Set by Command-Line Options: the
Get Opt i on Function

If, for example, you are using a POSIX shell such as bash or zsh and you always want SCons to use the - Q option,
you can set the SCONSFLAGS environment as follows:

% scons
scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Building targets ...
[buil d output]
scons: done buil ding targets.
% export SCONSFLAGS="- Q'
% scons
[buil d output]

For csh-style shells on POSIX systems you can set the SCONSFLAGS environment variable as follows:
$ setenv SCONSFLAGS "- Q'

For the Windows command shell (cmd) you can set the SCONSFLAGS environment variable as follows:
C.\ Users\ foo> set SCONSFLAGS="- Q'

To set SCONSFLAGS more permanently you can add the setting to the shell's startup file on POSIX systems, and
on Windows you can use the Syst em Pr oper ti es control panel applet to select Envi ronment Vari abl es
and set it there.

10.1.2. Getting Values Set by Command-Line Options:
the Get Opt i on Function

SCons providesthe Get Opt i on function to get the values set by the various command-line options.

One use case for Get Opt i on isto check whether or not the - h or - - hel p option has been specified. Normally,
SCons does not print its help text until after it has read al of the SConscript files, because it's possible that help
text has been added by some subsidiary SConscript file deep in the source tree hierarchy. Of course, reading all of
the SConscript files takes extratime. If you know that your configuration does not define any additional help text in
subsidiary SConscript files, you can speed up displaying the command-line help by using the Get Opt i on function
to load the subsidiary SConscript filesonly if the- h or - - hel p option has not been specified like this:

if not GetOption('help'):
SConscri pt (' src/ SConscript', export='env')

In general, the string that you passto the Get Opt i on function to fetch the value of acommand-line option setting is
the same as the "most common™ long option name (beginning with two hyphen characters), although there are some
exceptions. The list of SCons command-line options and the Get Opt i on strings for fetching them, are availablein
the Section 10.1.4, “ Strings for Getting or Setting Values of SCons Command-Line Options” section, below.

Get Opt i on can be used to retrieve the values of options defined by callsto AddOpt i on. A Get Opt i on call must
appear after the AddOpt i on call for that option. If the AddOpt i on call suppliedadest keyword argument, astring

Iy
=== SCONS 70

Setting Values of Command-Line Options; the
Set Opt i on Function

with that name is what to pass as the argument to Get Opt i on, otherwise it is a (possibly modified) version of the
first long option name - see AddQpt i on.

10.1.3. Setting Values of Command-Line Options: the
Set Opt i on Function

You can aso set the values of SCons command-line options from within the SConscri pt files by using the
Set Opt i on function. The strings that you use to set the values of SCons command-line options are available in the
Section 10.1.4, “ Strings for Getting or Setting Vaues of SCons Command-Line Options” section, below.

One use of the Set Opt i on functionisto specify avalueforthe-j or - - j obs option, so that you get the improved
performance of a parallel build without having to specify the option by hand. A complicating factor is that a good
valuefor the-j optionis somewhat system-dependent. One rough guideline is that the more processors your system
has, the higher you want to set the - j value, in order to take advantage of the number of CPUs.

For example, suppose the administrators of your development systems have standardized on setting a NUM_CPU
environment variable to the number of processors on each system. A little bit of Python code to access the environment
variable and the Set Opt i on function provides the right level of flexibility:

i mport os

numcpu = int(os.environ.get(' NUM CPU, 2))
Set Opti on(' num j obs', num cpu)
print("running with -j %" % Get Option(' num jobs'))

The above snippet of code sets the value of the - - j obs option to the value specified in the NUM_CPU environment
variable. (Thisisone of the exception caseswherethe string is spelled differently from the from command-line option.
The string for fetching or setting the - - j obs valueisnum j obs for historical reasons.) The code in this example
printsthe num j obs vauefor illustrative purposes. It uses a default value of 2 to provide some minimal parallelism
even on single-processor systems:

% scons -Q
running with -j 2
scons: ' is up to date.

But if the NUM_CPU environment variable is set, then use that for the default number of jobs:

% export NUM CPU="4"

% scons -Q

running with -j 4

scons: ~.' is up to date.

But any explicit-j or - -j obs value you specify on the command line is used first, regardless of whether or not the
NUM_CPU environment variableis set:

% scons -Q -j 7

running with -j 7

scons: ~.' is up to date.
% export NUM CPU="4"

% scons -Q -j 3

running with -j 3

Iy
=== SCONS 71

Strings for Getting or Setting Vaues of SCons Command-

Line Options

scons: is up to date

10.1.4. Strings for Getting or Setting Values of SCons

Command-Line Options

The strings that you can pass to the Get Opt i on and Set Opt i on functions usually correspond to the first long-
form option name (that is, name beginning with two hyphen characters. - -), after replacing any remaining hyphen

characters with underscores.

Set Opt i on isnot currently supported for options added with AddOpt i on.

Thefull list of strings and the variables they correspond to is as follows:

String for Get Opt i on and Set Opti on

Command-Line Option(s)

cache_debug

- -cache-debug

cache_di sabl e

--cache-di sabl e

cache_force

--cache-force

cache_show

--cache- show

cl ean -c,--cl ean,--renove

config --config

directory -C,--directory

di skcheck - -di skcheck

duplicate --duplicate

file -f,--file,--makefile ,--sconstruct
hel p -h,--help

ignore_errors

--ignore-errors

i mplicit_cache

--inplicit-cache

i mplicit_deps_changed

--inmplicit-deps-changed

i mplicit_deps_unchanged

--inplicit-deps-unchanged

interactive

--interact,--interactive

keep_goi ng -k, - - keep-goi ng
max_drift --max-drift
no_exec -n,--no-exec,--just-print,--dry-run,--

recon

no_site dir

--no-site-dir

num j obs

-j,--jobs

profile file

--profile

question

-(,--question

random

--random

repository

-Y,--repository,--srcdir

si |l ent -s,--silent,--quiet
site dir --site-dir
Iy
=== SCONS 72

Adding Custom Command-Line Options; the
AddOpt i on Function

String for Get Opt i on and Set Opt i on Command-Line Option(s)
stack_si ze --stack-si ze
taskmastertrace file --taskmastertrace
war n --warn - -warni ng

10.1.5. Adding Custom Command-Line Options: the
AddOpt i on Function

SCons aso alows you to define your own command-line options with the AddQpt i on function. The AddOpt i on
function takes the same arguments astheadd_opt i on method from the standard Python library module optpar se. !

Once you add a custom command-line option with the AddQOpt i on function, the value of the option (if any) is
immediately available using the standard Get Opt i on function. The argument to Get Opt i on must be the name
of the variable which holds the option. If the dest keyword argument to AddOpt i on is specified, the value is the
variable name. given. If not given, it is the name (without the leading hyphens) of the first long option name given to
AddOpt i on after replacing any remaining hyphen characters with underscores, since hyphensare not legal in Python
identifier names.

Set Opt i on isnot currently supported for options added with AddOpt i on.

One useful example of using this functionality isto provide a- - pr ef i x to help describe whereto install files:

AddOpt i on(
"--prefix',
dest='prefix",
type="string',
nar gs=1,
action='store',
metavar='DI R,
hel p="installation prefix',

)
env = Environment (PREFI X=CGet Opti on(' prefix'))

installed_foo = env.Install (' $PREFI X/ usr/bin', 'foo.in")
Def aul t (i nstal | ed_f 0o0)

The above code usesthe Get Opt i on function to set the $PREFI X construction variable to avalue you specify witha
command-line option of - - pr ef i x. Because $PREFI X expandsto anull string if it's not initialized, running SCons
without the option of - - pr ef i x installsthefileinthe/ usr/ bi n/ directory:

% scons -Q -n
Install file: "foo.in" as "/usr/bin/foo.in"

But specifying - - prefi x=/tnp/install on the command line causes the file to be installed in the / t np/
i nstall/usr/bin/ directory:

% scons -Q -n --prefix=/tnp/install
Install file: "foo.in" as "/tnp/install/usr/bin/foo.in"

1TheAddQ)t i on function is, in fact, implemented using a subclass of opt par se. Opt i onPar ser .

Iy
=== SCONS 73

Command-Linevar i abl e=val ue Build Variables

Note

Option-arguments separated from long options by whitespace, rather than by an =, cannot be correctly
resolved by SCons. While - - i nput =ARG is clearly opt followed by arg, for - -i nput ARG it is not
possibletotell without instructionswhether ARGisan argument belongingtothei nput option or apositional
argument. SCons treats positional arguments as either command-line build options or command-line targets
which are made available for usein an SConscri pt (seethe immediately following sections for details).
Thus, they must be collected before SConscr i pt processing takes place. Since AddOpt i on calls, which
provide the processing instructions to resolve any ambiguity, happen in an SConscr i pt , SCons does not
know in time for options added this way, and unexpected things happen, such as option-arguments assigned
as targets and/or exceptions due to missing option-arguments.

As aresult, this usage style should be avoided when invoking scons. For single-argument options, use the
- - i nput =ARG form on the command line. For multiple-argument options (nar gs greater than one), set
nar gs toonein AddOpt i on callsand either: combine the option-argumentsinto one word with aseparator,
and parse the result in your own code (see the built-in - - debug option, which alows specifying multiple
arguments as a single comma-separated word, for an example of such usage); or alow the option to be
specified multiple times by setting act i on=" append' . Both methods can be supported at the same time.

10.2. Command-Line vari abl e=val ue Build
Variables

Y ou may want to control various aspects of your build by allowing var i abl e=val ue valuesto be specified on the
command line. For example, suppose you want to be able to build a debug version of a program by running SCons
asfollows:

% scons - Q debug=1

SCons provides an ARGUMENTS dictionary that storesall of thevar i abl e=val ue assignmentsfrom the command
line. This alows you to modify aspects of your build in response to specifications on the command line. (Note that
unless you want to require avariable always be specified you probably want to use the Python dictionary get method,
which alows you to designate a default value to be used if there is no specification on the command line.)

The following code sets the $CCFLAGS construction variable in response to the debug flag being set in the
ARGUMENTS dictionary:

env = Environnent ()
debug = ARGUMENTS. get (' debug', 0)
i f int(debug):
env. Append(CCFLAGS=' - g')
env. Progran(' prog.c')

Thisresultsin the - g compiler option being used when debug=1 is used on the command line;

% scons - Q debug=0

CC -0 prog.o -c prog.c
CC -0 prog prog.o

% scons - Q debug=0

scons: ~.' is up to date.

Iy
=== SCONS 74

Controlling Command-Line Build Variables

% scons - Q debug=1
CC -0 prog.o -c -g prog.c
CC -0 prog prog.o
% scons - Q debug=1
scons: ' is up to date.

SCons keeps track of the precise command line used to build each object file, and as a result can determine that the
object and executable files need rebuilding when the value of the debug argument has changed.

The ARGUMENTS dictionary has two minor drawbacks. First, because it is a dictionary, it can only store one value
for each specified keyword, and thus only "remembers’ the last setting for each keyword on the command line. This
makes the ARGUMENTS dictionary less than ideal if you want to allow specifying multiple values on the command
line for a given keyword. Second, it does not preserve the order in which the variable settings were specified, which
is a problem if you want the configuration to behave differently in response to the order in which the build variable
settings were specified on the command line.

To accomodate these requirements, SCons provides an ARGLI ST variable that gives you direct access to
var i abl e=val ue settings on the command line, in the exact order they were specified, and without removing any
duplicate settings. Each element in the ARGLI ST variable isitself atwo-element list containing the keyword and the
value of the setting, and you must loop through, or otherwise select from, the elements of ARGLI ST to process the
specific settings you want in whatever way is appropriate for your configuration. For example, the following code lets
you add to the CPPDEFI NES construction variable by specifying multiple def i ne= settings on the command line:

cppdefines = []
for key, value in ARGLI ST:
if key == 'define':
cppdefi nes. append(val ue)
env = Environment (CPPDEFI NES=cppdef i nes)
env. Qbj ect (' prog.c')

Yields the following output:

% scons - Q defi ne=FQO

CC -0 prog.o -c -DFQOO prog.c

% scons -Q defi ne=FOO defi ne=BAR
CC -0 prog.o -c -DFQCO - DBAR prog.c

Note that the ARGLI ST and ARGUMENTS variables do not interfere with each other, but rather provide dightly
different viewsinto how you specified var i abl e=val ue settings on the command line. Y ou can use both variables
in the same SCons configuration. In general, the ARGUMENTS dictionary is more convenient to use, (since you can
just fetch variable settings through Python dictionary access), and the ARGLI ST list is more flexible (since you can
examine the specific order in which the command-line variable settings were given).

10.2.1. Controlling Command-Line Build Variables

Being ableto use acommand-line build variable likedebug=1 ishandy, but it can be achoreto write specific Python
code to recognize each such variable, check for errors and provide appropriate messages, and apply the values to a
construction variable. To help with this, SCons provides a Var i abl es class to define such build variables easily,
and a mechanism to apply the build variables to a construction environment. This allows you to control how the build
variables affect construction environments.

For example, suppose that you want to set a RELEASE construction variable on the command line whenever thetime
comesto build a program for release, and that the value of this variable should be added to the command line with the

Iy
=== SCONS 75

Providing Help for Command-Line Build Variables

appropriate define to pass the value to the C compiler. Here's how you might do that by setting the appropriate value
in adictionary for the $CPPDEFI NES construction variable:

vars = Vari abl es(None, ARGUMENTS)

vars. Add(' RELEASE , def aul t =0)

env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${ RELEASE}'})
env. Program(['foo.c', "bar.c'])

This SConst r uct file first creates a Var i abl es object which uses the values from the command-line options
dictionary ARGUVENTS (thevar s=Var i abl es(None, ARGUVENTS) call). It then usesthe object's Add method
to indicate that the RELEASE variable can be set on the command line, and that if not set the default value is 0. The
newly created Var i abl es object is passed to the Envi r onnent call used to create the construction environment
usingavari abl es keyword argument. This then alows you to set the RELEASE build variable on the command
line and have the variable show up in the command line used to build each object from a C sourcefile:

% scons - Q RELEASE=1
CC -0 bar.o -c -DRELEASE BU LD=1 bar.c
cc -o foo.o -c -DRELEASE BU LD=1 foo.c
cc -o foo foo.o bar.o

Historical note: In old SCons (prior to 0.98.1), these build variables were known as "command-line build options." At
that time, class was named Opt i ons and the predefined functions to construct options were named Bool Opt i on,
EnunmOpti on, Li st Opti on, Pat hOpti on, PackageQpti on and AddOpt i ons (contrast with the current
names in Section 10.2.4, “Pre-Defined Build Variable Functions’, below). Y ou may encounter these names in older
SConscri pt files, wiki pages, blog entries, StackExchange articles, etc. These old names no longer work, but a
mental substitution of “Variable” for “Option” allows the conceptsto transfer to current usage models.

10.2.2. Providing Help for Command-Line Build Variables

To make command-line build variables most useful, you ideally want to provide some hel p text to describethe available
variables when the you ask for help (run scons - h). You can write this text by hand, but SCons provides some
assistance. Variables objects provide a Gener at eHel pText method the generate text that describes the various
variables that have been added to it. The default text includes the help string itself plus other information such as
allowed values. (The generated text can al so be customized by replacingthe For mat Var i abl eHel pText method).
Y ou then pass the output from this method to the Hel p function:

vars = Vari abl es(None, ARGUVMENTS)

vars. Add(' RELEASE' , help="Set to 1 to build for rel ease', default=0)
env = Environnent (vari abl es=vars)

Hel p(vars. Gener at eHel pText (env))

SCons now displays some useful text when the - h option is used:

% scons -Q -h

RELEASE: Set to 1 to build for rel ease
default: O

actual: 0

Use scons -H for help about SCons built-in comrand-|ine options.

Iy
=== SCONS 76

Reading Build Variables From aFile

Y ou can see the help output shows the default value as well as the current actual value of the build variable.

10.2.3. Reading Build Variables From a File

Being able to to specify the value of a build variable on the command line is useful, but can still become tedious if
you have to specify the variable every time you run SCons. To make this easier, you can provide customized build
variable settingsin alocal file by providing afile name when the Var i abl es object is created:

vars = Vari abl es(' custom py')

vars. Add(' RELEASE', help="Set to 1 to build for rel ease', default=0)

env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${ RELEASE}'})
env. Program(['foo.c', 'bar.c'])

Hel p(vars. Gener at eHel pText (env))

This then allows you to control the RELEASE variable by setting itinthe cust om py file:
RELEASE = 1

Note that thisfile is actually executed like a Python script. Now when you run SCons:

% scons -Q

CC -0 bar.o -c -DRELEASE BU LD=1 bar.c
cc -o foo.o -c -DRELEASE BU LD=1 foo.c
cc -o foo foo.o0 bar.o

And if you change the contents of cust om py to:
RELEASE = 0

The object files are rebuilt appropriately with the new variable:

% scons -Q

CC -0 bar.o -c -DRELEASE BU LD=0 bar.c
cc -0 foo.o0 -c -DRELEASE BU LD=0 foo.c
cc -o foo foo.o bar.o

Finally, you can combine both methods with:
vars = Variabl es(' custom py', ARGUVENTS)

where values in the option file cust om py get overwritten by the ones specified on the command line.

10.2.4. Pre-Defined Build Variable Functions

SCons provides anumber of convenience functions that provide ready-made behaviorsfor various types of command-
line build variables. These functions all return a tuple which is ready to be passed to the Add or AddVari abl es
method call. You are of course free to define your own behaviors as well.

Iy
=== SCONS 77

Pre-Defined Build Variable Functions

10.2.4.1. Truel/False Values: the Bool Vari abl e Build Variable
Function

It is often handy to be able to specify avariable that controls asimple Boolean variable with at r ue or f al se value.
It would be even more handy to accomodate different preferences for how to represent t r ue or f al se values. The
Bool Var i abl e function makesit easy to accomodate these common representations of t r ue or f al se.

The Bool Var i abl e function takes three arguments. the name of the build variable, the default value of the build
variable, and the help string for the variable. It then returns appropriate information for passing to the Add method
of aVari abl es object, like so:

vars = Vari abl es(' custom py')

vars. Add(Bool Vari abl e(' RELEASE' , hel p="Set to build for rel ease', default=False))
env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${RELEASE}'})
env. Progran(' foo.c')

With this build variable in place, the RELEASE variable can now be enabled by setting it to thevalueyes ort :

% scons - Q RELEASE=yes fo00.0
cc -0 foo.o0 -c -DRELEASE BUI LD=True foo.c

% scons - Q RELEASE=t fo0o0.0
cc -0 foo.o -c -DRELEASE BUI LD=True foo.c

Other valuesthat equatetot r ue includey, 1, onandal | .
Conversely, RELEASE may now be given af al se value by settingittono or f :

% scons - Q RELEASE=no fo0o0.0
cc -o foo.o -c -DRELEASE BUI LD=Fal se foo.c

% scons - Q RELEASE=f fo0o0.o0
cc -o foo.o -c -DRELEASE BUI LD=Fal se foo.c

Other valuesthat equateto f al se includen, 0, of f and none.
Lastly, if you try to specify any other value, SCons supplies an appropriate error message:

% scons - Q RELEASE=bad_val ue foo.o0

scons: *** Error converting option: RELEASE
Invalid val ue for bool ean option: bad _val ue
File "/home/ ny/ project/SConstruct”, line 3, in <nmodul e>

10.2.4.2. Single Value From a Selection: the Enunvar i abl e Build
Variable Function

Suppose that you want to allow setting a COLOR variable that selects a background color to be displayed by an
application, but that you want to restrict the choices to a specific set of alowed colors. You can set this up quite
easily usingthe EnunVar i abl e function, whichtakesalist of al | owed_val ues inaddition to the variable name,
default value, and help text arguments:

Iy
=== SCONS 78

Pre-Defined Build Variable Functions

vars = Vari abl es(' custom py')
vars. Add(
EnunVar i abl e(
' COLOR'
hel p=' Set background col or",
default="red",
al | owed_val ues=('red', 'green', 'blue'),
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})

env. Program(' foo.c')
Hel p(vars. Gener at eHel pText (env))

Y ou can now explicitly set the COLOR build variable to any of the specified allowed values:

% scons -Q COLOR=red foo0.0

cc -0 foo.o -c -DCOLOR="red" foo.cC
% scons - Q COLOR=bl ue foo.o0

cc -o foo.o -c -DCOLOR="bl ue" foo.c
% scons - Q COLOR=green foo0.0

cc -o foo.o -c -DCOLOR="green" foo.c

But, importantly, an attempt to set COLOR to avalue that's not in the list generates an error message:

% scons - Q COLOR=magenta fo0o0.o0

scons: *** |nvalid value for option COLOR magenta. Valid values are: ('red',
File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>

This example can aso serve to further illustrate help generation: the help message here picks up not only the hel p
text, but augments it with information gathered from al | owed_val ues anddef aul t :

% scons -Q -h

COLOR Set background col or (red|green| bl ue)
default: red
actual: red

Use scons -H for hel p about SCons built-in comrand-1ine options.

The EnunVar i abl e function also provides away to map alternate namesto alowed values. Suppose, for example,
you want to alow the word navy to be used as a synonym for bl ue. You do this by adding a map dictionary that
maps its key values to the desired allowed value:

vars = Vari abl es(' custom py')
vars. Add(
EnunVar i abl e(
' COLOR
hel p=' Set background col or",
defaul t="red'
al | owed_val ues=('red', 'green', 'blue'),
map={' navy': 'blue'},

b4

SCONS 79

'green'

Pre-Defined Build Variable Functions

)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})

env. Program(' foo.c')
Now you can supply navy on the command line, and SCons translates that into bl ue when it comes time to use the
COLORVvariableto build atarget:

% scons -Q COLOR=navy foo0.0
cc -o foo.o -c -DCOLOR="bl ue" foo.c

By default, when using the Enunar i abl e function, the allowed values are case-sensitive:

% scons -Q COLOR=Red fo0o0.0

scons: *** |nvalid value for option COLOR Red. Valid values are: ('red', 'green',
File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>
% scons -Q COLOR=BLUE f 00. o0

scons: *** |nvalid value for option COLOR BLUE. Valid values are: ('red', 'green',

File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>
% scons -Q COLOR=nAVY fo00.0

scons: *** |nvalid value for option COLOR nAvY. Valid values are: ('red', 'green',

File "/home/ ny/ project/SConstruct”, |ine 10, in <nodul e>

The EnunVar i abl e function can take an additional i gnor ecase keyword argument that, when set to 1, tells
SConsto allow case differences when the values are specified:

vars = Vari abl es(' custom py')
vars. Add(
Enunvari abl e(
' COLOR
hel p=' Set background col or',
default="red",
al | owed _val ues=('red', 'green', 'blue'),
map={' navy': 'blue'},
i gnor ecase=1,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})
env. Program(' foo.c')

Which yields the output:

% scons -Q COLOR=Red fo0o0.0

cc -0 foo.o0 -c -DCOLOR="Red" foo0.cC
% scons -Q COLOR=BLUE f 00. o0

cc -o foo.o -c -DCOLOR="BLUE" foo0.cC
% scons -Q COLOR=nAVY fo00.0

cc -0 foo.o -c -DCOLOR="bl ue" foo.c
% scons - Q COLOR=green foo0.0

cc -o foo.o -c -DCOLOR="green" foo.c

Iy
=== SCONS 80

" bl ue'

" bl ue

" bl ue

Pre-Defined Build Variable Functions

Notice that an i gnor ecase value of 1 preserves the case-spelling supplied, only ignoring the case for matching.
If you want SCons to trandate the names into lower-case, regardless of the case used by the user, specify an
i gnor ecase vaueof 2;

vars = Vari abl es(' custom py')
var s. Add(
EnunVar i abl e(
' COLOR
hel p=' Set background col or',
defaul t="red",
al | owed_val ues=('red', 'green', 'blue'),
map={"' navy': 'blue'},
i gnor ecase=2,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLOR : '"${COLOR}"'})
env. Progran(' foo.c')

Now SCons usesvalues of r ed, gr een or bl ue regardless of how those values are spelled on the command line:

% scons - Q COLOR=Red foo0.0

cc -o foo.o -c -DCOLOR="red" foo0.cC
% scons -Q COLOR=nAVY foo0.0

cc -o foo.o -c -DCOLOR="Dbl ue" foo.c
% scons - Q COLOR=GREEN f 00. 0

cc -o foo.o -c -DCOLOR="green" foo.c

10.2.4.3. Multiple Values From a List: the Li st Vari abl e Build
Variable Function

Another way in which you might want to control abuild variable is to specify alist of allowed values, of which one
or more can be chosen (where Enunar i abl e alows exactly one value to be chosen). SCons provides this through
the Li st Var i abl e function. If, for example, you want to be able to set a COLORS variable to one or more of the
allowed values:

vars = Vari abl es(' custom py')
vars. Add(
Li st Vari abl e(
'COLORS', hel p='List of colors', default=0, nanes=['red', 'green', 'blue']
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' COLORS' : '"${COLORS}"'})
env. Program(' foo.c')

You can now specify a comma-separated list of allowed values, which get trandated into a space-separated list for
passing to the build commands:

% scons - Q COLORS=red, bl ue foo.o0

cc -0 foo.o0 -c -DCOLORS="red - Dbl ue" foo.c

% scons - Q COLORS=bl ue, green, red foo.o0

cc -0 foo.0 -c -DCOLORS="bl ue -Dgreen -Dred" foo.c

Iy
=== SCONS 81

Pre-Defined Build Variable Functions

In addition, the Li st Var i abl e function lets you specify explicit keywords of al | or none to select al of the
allowed values, or none of them, respectively:

% scons -Q COLORS=al | foo.0

cc -o foo.o -c -DCOLORS="red -Dgreen -Dblue" foo.c
% scons - Q COLORS=none fo00.0

cc -o foo.o -c -DCOLORS="" foo.cC

And, of course, anillegal value still generates an error message:

% scons - Q COLORS=magenta foo.o0

scons: *** Error converting option: COLORS
Invalid val ue(s) for option: nagenta
File "/home/ ny/ project/SConstruct”, line 7, in <nmodul e>

You can use this last characteristic as a way to enforce at least one of your valid options being chosen by specifying
the valid values with the nanmes parameter and then giving avalue not in that list as the def aul t parameter - that
way if no valueis given on the command line, the default is chosen, SCons errors out as thisis invalid. The example
is, in fact, set up that way by using O asthe default:

% scons -Q foo.o0

scons: *** Error converting option: COLORS
Invalid val ue(s) for option: 0
File "/home/ ny/ project/SConstruct”, line 7, in <nmodul e>

This technique works for Enuniar i abl e aswell.

10.2.4.4. Path Names: the Pat hVari abl e Build Variable Function

SCons provides a Pat hVar i abl e function to make it easy to create a build variable to control an expected path
name. If, for example, you need to define a preprocessor macro that controls the location of a configuration file:

vars = Vari abl es(' custom py')
vars. Add(
Pat hVari abl e(
"CONFI G, help="Path to configuration file', default="/etc/my_config'
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' CONFI G FILE : '"$CONFI G''})
env. Program' foo.c')

This allows you to override the CONFI G build variable on the command line as necessary:

% scons -Q foo.o0

cc -o foo.o -c -DCONFI G FI LE="/etc/ ny_config" foo.c
% scons - Q CONFI G=/ usr/ | ocal /etc/other_config foo.o
scons: foo.0' is up to date.

By default, Pat hVar i abl e checksto make sure that the specified path exists and generates an error if it doesn't:

% scons - Q CONFI G=/ does/ not/ exi st foo0.0

scons: *** Path for option CONFI G does not exist: /does/not/exist

Iy
=== SCONS 82

Pre-Defined Build Variable Functions

File "/home/ ny/ project/SConstruct”, line 7, in <nmodul e>

Pat hVar i abl e provides anumber of methods that you can use to change this behavior. If you want to ensure that
any specified paths are, in fact, files and not directories, use the Pat hVar i abl e. Pat hl sFi | e method as the
validation function:

vars = Vari abl es(' custom py')
var s. Add(
Pat hVar i abl e(
' CONFI G,
hel p=' Path to configuration file',
default="/etc/ny_config',
val i dat or =Pat hVar i abl e. Pat hl sFi | e,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' CONFI G FILE : '"$CONFIG''})
env. Progran(' foo.c')

Conversely, to ensure that any specified paths are directories and not files, use the Pat hVar i abl e. Pat hl sDi r
method as the validation function:

vars = Vari abl es(' custom py')
vars. Add(
Pat hVari abl e(
"DBDI R,
hel p=' Path to dat abase directory',
defaul t="/var/ny_dbdir",
val i dat or =Pat hVari abl e. Pat hl sDi r,
)
)
env = Environnent (vari abl es=vars, CPPDEFINES={'DBDIR : '"$DBDIR''})
env. Progran(' foo.c')

If you want to make sure that any specified paths are directories, and you would like the directory created if it doesn't
already exist, usethe Pat hVar i abl e. Pat hl sDi r Cr eat e method as the validation function:

vars = Vari abl es(' custom py')
var s. Add(
Pat hVar i abl e(
'DBDI R,
hel p=' Path to dat abase directory',
defaul t="/var/ny_dbdir"',
val i dat or =Pat hVari abl e. Pat hl sDi r Cr eat e,
)
)
env = Environnent (vari abl es=vars, CPPDEFINES={'DBDIR : '"$DBDIR''})
env. Progran(' foo.c')

Lastly, if you don't care whether the path exists, is afile, or a directory, use the Pat hVvar i abl e. Pat hAccept
method to accept any path you supply:

Iy
=== SCONS 83

Adding Multiple Command-Line Build Variables at Once

vars = Vari abl es(' custom py')
vars. Add(
Pat hVar i abl e(
" QUTPUT" ,
hel p="Path to output file or directory',
def aul t =None,
val i dat or =Pat hVar i abl e. Pat hAccept ,
)
)
env = Environnent (vari abl es=vars, CPPDEFI NES={' QUTPUT' : ' "$OQUTPUT"'})
env. Program(' foo.c')

10.2.4.5. Enabled/Disabled Path Names: the PackageVar i abl e
Build Variable Function

Sometimes you want to give even more control over a path name variable, allowing them to be explicitly enabled or
disabled by using yes or no keywords, in addition to allowing supplying an explicit path name. SCons provides the
PackageVar i abl e function to support this:

vars = Vari abl es("custom py")
vars. Add(

PackageVari abl e(" PACKAGE", hel p="Locati on package", default="/opt/location")
)

env = Environnent (vari abl es=vars, CPPDEFI NES={" PACKAGE": '"$PACKAGE"'})
env. Program("foo.c")

When the SConscri pt file uses the PackageVari abl e function, you can still use the default or supply an
overriding path name, but you can now explicitly set the specified variable to avalue that indicates the package should
be enabled (in which case the default should be used) or disabled:

% scons -Q foo.0

cc -o foo.o -c - DPACKAGE="/opt/| ocation" foo.c

% scons - Q PACKAGE=/usr /| ocal /|l ocation foo.0

cc -o foo.o -c - DPACKAGE="/usr/|ocal /|l ocation" foo.c
% scons - Q PACKAGE=yes f00.0

cc -0 foo.o0 -c - DPACKAGE="True" foo.c

% scons - Q PACKAGE=no fo00.o0

cc -o foo.o -c - DPACKAGE="Fal se" foo.c

10.2.5. Adding Multiple Command-Line Build Variables at
Once

Lastly, SCons provides away to add multiple build variablesto aVar i abl es object at once. Instead of having to call
the Add method multiple times, you can call the AddVar i abl es method with the build variables to be added to the
object. Each build variable is specified as either atuple of arguments, or as a call to one of the pre-defined functions
for pre-packaged command-line build variables, which returns such a tuple. Note that an individual tuple cannot take
keyword arguments in the way that a call to Add or one of the build variable functions can. The order of variables
givento AddVar i abl es does not matter.

Iy
=== SCONS 84

Handling Unknown Command-Line Build Variables: the
UnknownVar i abl es Function

vars = Vari abl es()
vars. AddVar i abl es(
("RELEASE', 'Set to 1 to build for rel ease', 0),
("CONFIG, '"Configuration file', '/etc/ny_config'),
Bool Vari abl e(* war ni ngs', hel p='conpilation with -Wall and sinmliar', default=True),
EnunVar i abl e(
' debug’ ,
hel p=' debug out put and synbol s',
def aul t =" no',
al | owed_val ues=("'yes', 'no', 'full"),
map={},
i gnor ecase=0,
).
Li st Vari abl e(
'shared',
hel p="libraries to build as shared libraries",
default="al | ",
nanmes=li st _of |ibs,
).
PackageVar i abl e(
'x11', hel p="use X11 installed here (yes = search some places)', default='yes'
).
Pat hVari abl e(* gqtdir', hel p="where the root of @ is installed , default=qtdir),

10.2.6. Handling Unknown Command-Line Build
Variables: the UnknownVar i abl es Function

Humans, of course, occasionally misspell variable namesin their command-line settings. SCons does not generate an
error or warning for any unknown variables specified on the command line, because it can not reliably tell whether
a given "misspelled” variable is really unknown and a potential problem or not. After all, you might be processing
arguments directly using ARGUMENTS or ARGLI ST with some Python code in your SConscr i pt file.

If, however, youareusingaVar i abl es object to defineaspecific set of command-linebuild variablesthat you expect
to be able to set, you may want to provide an error message or warning of your own if avariable setting is specified
that is not among the defined list of variable names known to the Var i abl es object. Y ou can do this by calling the
UnknownVar i abl es method of the Var i abl es object to get the settings VVar i abl es did not recognize:

vars = Vari abl es(None)
vars. Add(' RELEASE' , help="Set to 1 to build for rel ease', default=0)
env = Environnent (vari abl es=vars, CPPDEFI NES={' RELEASE BUI LD : ' ${RELEASE}'})
unknown = vars. UnknownVari abl es()
i f unknown:
print("Unknown variables: %" %" ".join(unknown. keys()))
Exit (1)
env. Progran(' foo.c')

TheUnknownVar i abl es method returnsadictionary containing the keywords and values of any variables specified
on the command line that are not among the variables known to the Var i abl es object (from having been specified

Iy
=== SCONS 85

Command-Line Targets

using the Vari abl es object's Add method). The example above, checks whether the dictionary returned by
UnknownVar i abl es isnon-empty, and if so prints the Python list containing the names of the unknown variables
and then callsthe Exi t function to terminate SCons:

% scons - Q NOT_KNOWN=f oo
Unknown vari abl es: NOT_KNOMWN

Of course, you can process the items in the dictionary returned by the UnknownVar i abl es function in any way
appropriate to your build configuration, including just printing a warning message but not exiting, logging an error
somewhere, etc.

Note that you must delay the call of UnknownVar i abl es until after you have applied the Var i abl es objecttoa
construction environment with the var i abl es= keyword argument of an Envi r onment call: the variablesin the
object are not fully processed until this has happened.

10.3. Command-Line Targets

10.3.1. Fetching Command-Line Targets: the
COMVAND LI NE TARCETS Variable

SCons provides a COVWAND LI NE_TARGETS variable that lets you fetch the list of targets that were specified on
the command line. Y ou can use the targets to manipul ate the build in any way you wish. Asasimple example, suppose
that you want to print a reminder whenever a specific program is built. You can do this by checking for the target in
the COMWAND_LI NE_TARGETS list:

if "bar' in COMVAND LI NE_TARGETS:

print("Don't forget to copy bar' to the archive!")
Def aul t (Progran(' foo.c'))
Program(' bar.c')

Now, running SCons with the default target works as usual, but explicity specifying the bar target on the command
line generates the warning message:

% scons -Q

cc -o foo.o -c foo.c

cc -o foo foo.o

% scons -Q bar

Don't forget to copy bar' to the archive!
CC -0 bar.o -c bar.c

CC -0 bar bar.o

Another practical use for the COMMAND_LI NE_TARCETS variable might be to speed up a build by only reading
certain subsidiary SConscri pt filesif aspecific target is requested.

10.3.2. Controlling the Default Targets: the Def aul t
Function

Y ou can control whichtargets SConsbuildsby default - that is, when there are no targets specified on the command line.
As mentioned previously, SCons normally builds every target in or below the current directory unless you explicitly
specify one or more targets on the command line. Sometimes, however, you may want to specify that only certain
programs, or programs in certain directories, should be built by default. Y ou do thiswith the Def aul t function:

Iy
=== SCONS 86

Controlling the Default Targets. the Def aul t Function

env = Environment ()

hell o = env. Progran(' hello.c")
env. Progran(' goodbye. c')

Def aul t (hel | o)

ThisSConst r uct fileknowshow to build two programs, hel | o andgoodbye, but only buildsthehel | o program
by default:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q

scons: " hello' is up to date
% scons - Q goodbye

cc -0 goodbye.o -c goodbye. c
cc -0 goodbye goodbye. o

Note that, even when you use the Def aul t function in your SConst r uct file, you can still explicitly specify the
current directory (.) on the command line to tell SConsto build everything in (or below) the current directory:

% scons -Q .

cc -0 goodbye.o -c goodbye. c
cc -0 goodbye goodbye. o

cc -0 hello.o -c hello.c

cc -0 hello hello.o

You can aso call the Def aul t function more than once, in which case each call adds to the list of targets to be
built by default:

env = Environment ()

progl = env. Progran(' progl.c')
Def aul t (progl)

prog2 = env. Progran(' prog2.c')
prog3 = env. Progran(' prog3.c')
Def aul t (pr og3)

Or you can specify more than onetarget in asingle call to the Def aul t function;

env = Environment ()

progl = env. Progran(' progl.c')
prog2 = env. Progran(' prog2.c')
prog3 = env. Progran(' prog3.c')
Def aul t (progl, prog3)

Either of these last two examples build only the progl and prog3 programs by default:

% scons -Q

cc -0 progl.o -c progl.c
cCc -0 progl progl.o

cc -0 prog3.0 -c prog3.c

Iy
=== SCONS 87

Controlling the Default Targets. the Def aul t Function

cc -0 prog3 prog3.o0

% scons -Q .

CC -0 prog2.o0 -c prog2.c
CC -0 prog2 prog2.o0

You can list adirectory as an argument to Def aul t :

env = Environment ()

env. Progran([' progl/ main.c', 'progl/foo.c'])
env. Progran([' prog2/ main.c', 'prog2/bar.c'])
Def aul t (" progl')

In which case only the target(s) in that directory are built by default:

% scons -Q

cc -0 progl/foo.o -c progl/foo.c

cc -0 progl/main.o -c progl/ main.c

cCc -0 progl/ main progl/ main.o progl/foo.o
% scons -Q

scons: "progl' is up to date.

% scons -Q .

CC -0 prog2/bar.o -c prog2/bar.c

CC -0 prog2/main.o -c prog2/ main.c

CC -0 prog2/ main prog2/ main.o prog2/ bar.o

Lastly, if for some reason you don't want any targets built by default, you can use the Python None variable:

env = Environment ()

progl = env. Progran(' progl.c')
prog2 = env. Progran(' prog2.c')
Def aul t (None)

Which would produce build output like:

% scons -Q

scons: *** No targets specified and no Default() targets found. Stop.
Found nothing to build

% scons -Q .

cc -0 progl.o -c progl.c

cc -0 progl progl.o

CC -0 prog2.0 -c prog2.c

CC -0 prog2 prog2.o0

10.3.2.1. Fetching the List of Default Targets: the DEFAULT TARGETS
Variable

SCons provides a DEFAULT_TARGETS variable that lets you get at the current list of default targets specified by
calstotheDef aul t function or method. The DEFAULT _TARGETS variable has two important differencesfrom the
COMVAND LI NE_TARCGETS variable. First, the DEFAULT _TARGETS variableisalist of internal SCons nodes, so
you need to convert the list elements to strings if you want to print them or look for a specific target name. Y ou can
do thiseasily by calling the st r onthe elementsin alist comprehension:

Iy
=== SCONS 88

Fetching the List of Build Targets, Regardless of Origin:
theBUI LD_TARGETS Variable

progl = Progran(' progl.c')
Def aul t (progl)
print (" DEFAULT_TARGETS is %" % [str(t) for t in DEFAULT_TARGETS])

(Keep in mind that all of the manipulation of the DEFAULT_TARGETS list takes place during the first phase when
SConsisreading up the SConscr i pt files, which is obviousif you leave off the - Qflag when you run SCons:)

% scons

scons: Readi ng SConscript files ...
DEFAULT _TARGETS is ['progl']

scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 progl.o -c progl.c

cc -0 progl progl.o

scons: done buil ding targets.

Second, the contents of the DEFAULT_TARGETS list changes in response to calls to the Def aul t function, as you
can see from the following SConst r uct file:

progl = Progran(' progl.c')

Def aul t (progl)

print (" DEFAULT _TARGETS is now %" % [str(t) for t in DEFAULT TARGETS])
prog2 = Progran(' prog2.c')

Def aul t (pr og2)

print ("DEFAULT _TARGETS is now %" % [str(t) for t in DEFAULT TARGETS])

Which yields the output:

% scons

scons: Readi ng SConscript files ...
DEFAULT _TARGETS is now [' progl']
DEFAULT _TARGETS is now ['progl', 'prog2']
scons: done readi ng SConscript files.
scons: Building targets ...

cc -0 progl.o -c progl.c

cC -0 progl progl.o

CC -0 prog2.o0 -c prog2.c

CC -0 prog2 prog2.o0

scons: done buil ding targets.

In practice, this simply means that you need to pay attention to the order in which you call the Def aul t function
and refer to the DEFAULT _TARGETS list, to make sure that you don't examine the list before you have added the
default targets you expect to find in it.

10.3.3. Fetching the List of Build Targets, Regardless of
Origin: the BU LD _TARGETS Variable

You have aready seen the COVWAND LI NE_TARGETS variable, which contains a list of targets specified on the
command line, and the DEFAULT_TARCGETS variable, which contains a list of targets specified via calls to the
Def aul t method or function. Sometimes, however, youwant alist of whatever targets SConstriesto build, regardless
of whether the targets came from the command line or aDef aul t call. You could code this up by hand, as follows:

Iy
=== SCONS 89

Fetching the List of Build Targets, Regardless of Origin:
theBUI LD_TARGETS Variable

i f COMVAND_LI NE_TARCETS:

targets = COMVMAND_LI NE_TARGETS
el se:

targets = DEFAULT_TARCETS

SCons, however, provides a convenient BUI LD TARCGETS variable that eliminates the need for this by-hand
manipulation. Essentially, the BUIl LD_TARGETS variable contains a list of the command-line targets, if any were
specified, and if no command-line targets were specified, it contains a list of the targets specified via the Def aul t
method or function.

Because BUI LD_TARGETS may contain alist of SCons nodes, you must convert the list elements to strings if you
want to print them or look for a specific target name, just like the DEFAULT_TARGETS list:

progl = Progran(' progl.c')

Program(' prog2.c')

Def aul t (progl)

print("BU LD TARGETS is %" % |[str(t) for t in BU LD TARCGETS])

Notice how the value of BUI LD _TARGETS changes depending on whether atarget is specified on the command line
- BUI LD_TARCETS takes from DEFAULT_TARGETS only if there are no COVMAND_LI NE_TARCGETS:

% scons -Q

BU LD TARGETS is ['progl']
cc -0 progl.o -c progl.c
cc -0 progl progl.o

% scons -Q prog2

BUI LD TARGETS is ['prog2']
CC -0 prog2.o0 -c prog2.c
CC -0 prog2 prog2.o0

% scons -Q -c .

BU LD TARGETS is ['."]
Renoved progl. o

Renoved progl

Renoved prog2.o

Renoved prog2

Iy
=== SCONS 90

11 Installing Files in Other

Directories: the | nst al |
Builder

Once a program is built, it is often appropriate to install it in another directory for public use. You usethel nst al |
method to arrange for a program, or any other file, to be copied into a destination directory:

env = Environnent ()
hell o = env. Progran(' hello.c")
env.Install ('/usr/bin', hello)

Note, however, that installing afileis still considered atype of file"build.” Thisisimportant when you remember that
the default behavior of SConsisto build filesin or below the current directory. If, asin the example above, you are
installing filesin adirectory outside of thetop-level SConst r uct file'sdirectory tree, you must specify that directory
(or ahigher directory, such as/) for it to install anything there:

% scons -Q

cc -0 hello.o -c hello.c

cc -0 hello hello.o

% scons -Q /usr/bin

Install file: "hello" as "/usr/bin/hello"

It can, however, be cumbersome to remember (and type) the specific destination directory in which the program (or
other file) should be installed. A call to Def aul t can be used to add the directory to the list of default targets,
removing the need to type it, but sometimes you don't want to install on every build. Thisisan areawherethe Al i as
function comes in handy, alowing you, for example, to create a pseudo-target named i nst al | that can expand to
the specified destination directory:

env = Environnent ()

hell o = env. Progran(' hello.c')
env.Install ('/usr/bin', hello)
env.Alias('install', '/usr/bin")

This then yields the more natural ability to install the program in its destination as a separate invocation, as follows:

Installing Multiple Filesin a Directory

% scons -Q

cc -o hello.o -c hello.c

cc -o hello hello.o

% scons -Q instal

Install file: "hello" as "/usr/bin/hello"

11.1. Installing Multiple Files in a Directory

You caninstall multiple filesinto adirectory ssimply by calling thel nst al | function multiple times:

env = Environnent ()

hello = env. Progran(' hello.c")
goodbye = env. Progran(' goodbye.c')
env.Install ('/usr/bin', hello)
env.Install ('/usr/bin', goodbye)
env.Alias('install', '/usr/bin")

Or, more succinctly, listing the multiple input filesin alist (just like you can do with any other builder):

env = Environment ()

hell o = env. Progran(' hello.c")

goodbye = env. Progran{(' goodbye. c')
env.Install ('/usr/bin', [hello, goodbye])
env.Alias('install', '"/usr/bin")

Either of these two examplesyidlds:

% scons -Q instal

cc -0 goodbye.o -c goodbye. c

cc -o goodbye goodbye. o

Install file: "goodbye" as "/usr/bin/goodbye"
cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello"

11.2. Installing a File Under a Different Name

Thel nst al I method preserves the name of the file when it is copied into the destination directory. If you need to
change the name of the file when you copy it, usethe | nst al | As function:

env = Environnent ()

hello = env. Progran(' hello.c")

env. I nstall As('/usr/bin/hello-new , hello)
env.Alias('install', '"/usr/bin")

Thisinstallsthe hel | o program with the name hel | o- newasfollows:

% scons -Q instal
cc -0 hello.o -c hello.c

Iy
=== SCONS 92

Installing Multiple Files Under Different Names

cc -o hello hello.o
Install file: "hello" as "/usr/bin/hello-new

11.3. Installing Multiple Files Under Different
Names

If you have multiple files that al need to be installed with different file names, you can either call thel nst al | As
function multiple times, or as a shorthand, you can supply same-length lists for both the target and source arguments:

env = Environnent ()
hell o = env. Progran(' hello.c')
goodbye = env. Progran{(' goodbye. c')
env.Install As(['/usr/bin/hello-new ,
"/ usr/ bi n/ goodbye- new],
[hel | o, goodbye])
env.Alias('install', '/usr/bin")

In this case, the | nst al | As function loops through both lists simultaneously, and copies each source file into its
corresponding target file name:

% scons -Q instal

cc -0 goodbye.o -c goodbye. c

cc -o goodbye goodbye. o

Install file: "goodbye" as "/usr/bin/goodbye-new'
cc -0 hello.o -c hello.c

cc -0 hello hello.o

Install file: "hello" as "/usr/bin/hello-new

11.4. Installing a Shared Library

If ashared library is created with the $SHLI BVERSI ONvariable set, sconswill create symbolic links as needed based
on that variable. To properly install such alibrary including the symbolic links, usethe | nst al | Ver si onedLi b
function.

For example, on aLinux system, thisinstruction:
foo = env. SharedLi brary(target="fo00", source="foo.c", SHLIBVERSI ON="1.2.3")

Will produce a shared library | i bf 00. so. 1. 2. 3 and symbolic links | i bf 00. so and | i bf 00. so. 1 which
pointto | i bf 0o. so. 1. 2. 3. You can use the Node returned by the Shar edLi br ary builder in order to install
thelibrary and its symbolic links in one go without having to list them individually:

env. I nst al | Ver si onedLi b(target="1ib", source=fo00)

On systems which expect a shared library to be installed both with a name that indicates the version, for run-
time resolution, and as a plain name, for link-time resolution, the | nst al | Ver si onedLi b function can be used.
Symbolic links appropriate to the type of system will be generated based on symlinks of the source library.

Iy
=== SCONS 93

12 Platform-Independent File
System Manipulation

SCons provides a number of platform-independent functions, called f act or i es, that perform common file system
manipulations like copying, moving or deleting files and directories, or making directories. These functions are
fact ori es because they don't perform the action at the time they're called, they each return an Action object that
can be executed at the appropriate time.

12.1. Copying Files or Directories: The Copy
Factory

Suppose you want to arrange to make a copy of afile, and don't have a suitable pre-existing builder. 1 One way would
be to use the Copy action factory in conjunction with the Command builder:

Command("file.out", "file.in", Copy("$TARGET", "$SOURCE"))

Notice that the action returned by the Copy factory will expand the $TARGET and $SOURCE strings at the time
file.out ishbuilt, and that the order of the arguments is the same as that of a builder itself--that is, target first,
followed by source:

% scons -Q
Copy("file.out", "file.in")

Y ou can, of course, name afile explicitly instead of using $TARGET or $SOURCE:
Conmmand("file.out", [], Copy("S$TARGET", "file.in"))
Which executes as.

% scons -Q
Copy("file.out", "file.in")

1 Unfortunately, in the early days of SCons design, we used the name Copy for the function that returns a copy of the environment, otherwise that
would be the logical choice for aBuilder that copies afile or directory tree to atarget location.

Deleting Files or Directories: The Del et e Factory

The usefulness of the Copy factory becomes more apparent when you useitin alist of actions passed to the Command
builder. For example, suppose you needed to run afile through a utility that only modifies files in-place, and can't
"pipe" input to output. One solution isto copy the source file to atemporary file name, run the utility, and then copy
the modified temporary file to the target, which the Copy factory makes extremely easy:

Command(
“file.out",
“file.in",
action=[
Copy("tempfile", "$SOURCE"),
"modi fy tenpfile",
Copy (" $TARGET", "tenpfile"),
1,
)

The output then looks like:

% scons -Q

Copy("tenpfile", "file.in")
nodi fy tempfile
Copy("file.out", "tenpfile")

The Copy factory has athird optional argument which controls how symlinks are copied.

Synbolic |ink shallow copied as a new synbolic |ink:
Command(" Li nkln", "LinkQut", Copy("$TARGET", "$SOURCE", sym inks=True))

Synbolic link target copied as a file or directory:
Command(" Linkln", "FileO D rectoryQut", Copy("$TARGET", "S$SOURCE", sym inks=Fal se))

12.2. Deleting Files or Directories: The Del et e
Factory

If you need to delete a file, then the Del et e factory can be used in much the same way as the Copy factory. For
example, if we want to make sure that the temporary file in our last example doesn't exist before we copy to it, we
could add Del et e to the beginning of the command list:

Command(
"file.out",
"file.in",
acti on=[
Del ete("tenpfile"),
Copy("tenpfile", "$SOURCE"),
"modi fy tenpfile”,
Copy (" $TARGET", "tenpfile"),
1,
)
S
'—‘-‘SCONS 95

Moving (Renaming) Files or Directories. The Move
Factory

Which then executes as follows:

% scons -Q

Del ete("tenpfile")
Copy("tempfile”, "file.in")
nodi fy tempfile
Copy("file.out", "tenpfile")

Of course, like all of these Action factories, the Del et e factory also expands $TARGET and $SOURCE variables
appropriately. For example:

Comand(
"file.out",
"file.in",
acti on=[
Del et e(" $TARCET") ,
Copy (" $TARGET", "$SOURCE"),

1.

Executes as:

% scons -Q
Delete("file.out")
Copy("file.out", "file.in")

Note, however, that you typically don't need to call the Del et e factory explicitly in this way; by default, SCons
deletes its target(s) for you before executing any action.

One word of caution about using the Del et e factory: it has the same variable expansions available as any other
factory, including the $SOURCE variable. Specifying Del et e(" $SOURCE") is not something you usually want to
do!

12.3. Moving (Renaming) Files or Directories:
The Mbve Factory

The Mbve factory alows you to rename afile or directory. For example, if we don't want to copy the temporary file,
we could use:

Command(
"file.out",
"file.in",
act i on=[

Copy("tenpfile", "$SOURCE"),

"modi fy tenpfile”,

Move(" $TARGET", "tenmpfile"),
] 1

Iy
=== SCONS 96

Updating the Modification Time of aFile: The Touch
Factory

Which would execute as:
% scons -Q
Copy("tenpfile", "file.in")

nodi fy tempfile
Move("file.out", "tenpfile")

12.4. Updating the Modification Time of a File:
The Touch Factory

If you just need to update the recorded modification time for afile, use the Touch factory:

Command(
"file.out",
"file.in",
act i on=[

Copy (" $TARGET", "$SOURCE"),
Touch(" $TARCGET"),

Which executes as:

% scons -Q
Copy("file.out", "file.in")
Touch("file.out")

12.5. Creating a Directory: The Mkdi r Factory

If you need to create a directory, use the Mkdi r factory. For example, if we need to process a file in a temporary
directory in which the processing tool will create other files that we don't care about, you could use:

Command(
"file.out",
"file.in",
action=[

Del ete("tenpdir"),

Mkdir("tempdir"),

Copy("tenpdir/${SOURCE. file}", "$SOURCE"),
"process tenpdir",

Move(" $TARGET", "tenpdir/output_file"),

Del ete("tenpdir"),

Which executes as:

% scons -Q
Del ete("tenpdir™)

Iy
=== SCONS 97

Changing File or Directory Permissions: The Chnod
Factory

Mkdir("tenpdir")

Copy("tempdir/file.in", "file.in")

process tenpdir

Move("file.out", "tenpdir/output file")

scons: *** [file.out] tenpdir/output file: No such file or directory

12.6. Changing File or Directory Permissions:
The Chnod Factory

To change permissions on a file or directory, use the Chnod factory. The permission argument uses POSIX-style
permission bits and should typically be expressed as an octal, not decimal, number:

Command(
"file.out",
"file.in",
acti on=[

Copy (" $TARGET", "$SOURCE"),
Chnod(" $TARGET", 00755),

Which executes:

% scons -Q
Copy("file.out", "file.in")
Chnod("file.out", 00755)

12.7. Executing an action immediately: the
Execut e Function

We've been showing you how to use Action factoriesinthe Cormand function. Y ou can al so execute an Action returned
by afactory (or actualy, any Action) at thetimethe SConscr i pt fileisread by using the Execut e function. For
example, if we need to make sure that a directory exists before we build any targets,

Execute(Mkdir (' /tnp/ ny_tenp directory'))

Notice that thiswill create the directory whilethe SConscr i pt fileisbeing read:

% scons

scons: Readi ng SConscript files ...
Mkdir("/tmp/ nmy_tenp _directory")
scons: done readi ng SConscript files.
scons: Building targets ...

scons: ~.' is up to date.

scons: done buil ding targets.

If you're familiar with Python, you may wonder why you would want to use this instead of just calling the native
Python os. nkdi r () function. The advantage here is that the Mkdi r action will behave appropriately if the user

Iy
=== SCONS 98

Executing an action immediately: the Execut e Function

specifiesthe SCons - n or - g options--that is, it will print the action but not actually make the directory when - n is
specified, or make the directory but not print the action when - q is specified.

The Execut e function returnsthe exit status or return value of the underlying action being executed. It will also print
an error message if the action fails and returns a non-zero value. SCons will not, however, actually stop the build if
the action fails. If you want the build to stop in response to afailurein an action called by Execut e, you must do so
by explicitly checking the return value and calling the Exi t function (or a Python equivalent):

if Execute(Mdir('/tnp/ny_tenp directory')):
A problem occurred while making the tenp directory.
Exit (1)

Iy
=== SCONS 99

13 Controlling Removal of
Targets

There are two occasions when SCons will, by default, remove target files. The first is when SCons determines that
an target file needs to be rebuilt and removes the existing version of the target before executing The second is when
SCons is invoked with the - ¢ option to "clean" atree of its built targets. These behaviours can be suppressed with
the Pr eci ous and Nod ean functions, respectively.

13.1. Preventing target removal during build:
the Preci ous Function

By default, SCons removestargets before building them. Sometimes, however, thisis not what you want. For example,
you may want to update a library incrementally, not by having it deleted and then rebuilt from all of the constituent
object files. In such cases, you can use the Pr eci ous method to prevent SCons from removing the target before
itisbuilt:

env = Envi ronnment (RANLI BCOVE' ')
lib env. Library('foo', ['fl.c', 'f2.¢', 'f3.¢c'])
env. Preci ous(!lib)

Although the output doesn't look any different, SCons does not, in fact, delete the target library before rebuilding it:

% scons -Q

cc -o fl.o-c fil.c

cc -o f2.0 -c f2.c

cc -o f3.0 -c f3.c

ar rc libfoo.a fl1l.0 f2.0 f3.0

SConswill, however, still delete files marked as Pr eci ous when the - ¢ option is used.

13.2. Preventing target removal during clean:
the NoCl ean Function

By default, SCons removes all built targets when invoked with the - ¢ option to clean a source tree of built targets.
Sometimes, however, thisis not what you want. For example, you may want to remove only intermediate generated

Removing additional files during clean: the Cl ean
Function

files (such asobject files), but leave thefinal targets (the libraries) untouched. In such cases, you can usethe NoCl ean
method to prevent SCons from removing atarget during a clean:

env = Envi ronnment (RANLI BCOVE' ')
lib = env.Library('foo', ['fl.c', 'f2.¢c', '"f3.¢c'])
env. NoCl ean(| i b)

Notice that thel i bf 0o. a isnot listed as aremoved file:

% scons -Q

cc -ofl.o-cfl.c

cc -o f2.0-c f2.c

cc -o f3.0-c f3.c

ar rc libfoo.a f1.0 f2.0 f3.0

% scons -cC

scons: Readi ng SConscript files ...
scons: done readi ng SConscript files.
scons: Cl eaning targets ...

Renoved f1.0

Renoved f 2.0

Renoved f 3.0

scons: done cl eani ng targets.

13.3. Removing additional files during clean:
the C ean Function

There may be additional files that you want removed when the - ¢ option is used, but which SCons doesn't know
about because they're not normal target files. For example, perhaps a command you invoke creates a log file as part
of building the target file you want. Y ou would like the log file cleaned, but you don't want to have to teach SCons
that the command "builds' two files.

You can use the Cl ean function to arrange for additional files to be removed when the - ¢ option is used. Notice,
however, that the Cl ean function takes two arguments, and the second argument is the name of the additional file
you want cleaned (f 0o. | og in this example):

t = Conmand('foo.out', 'foo.in', 'build -o $TARGET $SOURCE')
Clean(t, 'foo.log")

Thefirst argument isthetarget with which you want the cleaning of thisadditional file associated. Inthe above example,
we've used the return value from the Command function, which representsthe f 0o. out target. Now whenever the
f 00. out targetis cleaned by the - ¢ option, thef 0o. | og filewill be removed as well:

% scons -Q

build -o foo.out foo.in
% scons -Q -c

Renmpoved f oo. out

Renmoved f oo. | og

Iy
=== SCONS 101

14 Hierarchical Builds

The source code for large software projects rarely stays in a single directory, but is nearly always divided into a
hierarchy of directories. Organizing alarge software build using SCons involves creating a hierarchy of build scripts
which are connected together using the SConscr i pt function.

14.1. SConscri pt Files

Aswe've dready seen, the build script at the top of thetreeiscalled SConst r uct . Thetop-level SConst r uct file
canusetheSConscri pt functiontoincludeother subsidiary scriptsin the build. These subsidiary scriptscan, inturn,
use the SConscr i pt function to include still other scriptsin the build. By convention, these subsidiary scripts are
usually named SConscr i pt . For example, atop-level SConst r uct file might arrange for four subsidiary scripts
to be included in the build as follows:

SConscri pt (
[
"drivers/display/ SConscript',
"drivers/ nmouse/ SConscri pt',
' par ser/ SConscri pt',
‘utilities/SConscript',

In this case, the SConst r uct filelists all of the SConscri pt filesin the build explicitly. (Note, however, that
not every directory in the tree necessarily hasan SConscr i pt file) Alternatively, thedr i ver s subdirectory might
contain an intermediate SConscr i pt file, in which casethe SConscri pt cal inthetop-level SConst ruct file
would look like:

SConscri pt (['drivers/ SConscript', 'parser/SConscript', '"utilities/SConscript'])
And the subsidiary SConscr i pt fileinthedri ver s subdirectory would look like:

SConscri pt ([' di spl ay/ SConscri pt', 'nouse/ SConscript'])

Path Names Are Relative to the SConscr i pt Directory

Whether you list all of theSConscr i pt filesinthetop-level SConst r uct file, or placeasubsidiary SConscr i pt
filein intervening directories, or use some mix of the two schemes, is up to you and the needs of your software.

14.2. Path Names Are Relative to the
SConscri pt Directory

Subsidiary SConscr i pt filesmakeit easy to create abuild hierarchy because all of the file and directory namesin a
subsidiary SConscr i pt filesareinterpreted relativetothedirectory inwhichthat SConscr i pt filelives. Typicaly,
thisallowsthe SConscr i pt file containing the instructions to build atarget file to live in the same directory as the
source files from which the target will be built, making it easy to update how the software is built whenever files are
added or deleted (or other changes are made). It also tends to keep scripts more readabl e as they don't need to befilled
with complex paths.

For example, suppose we want to build two programs pr ogl and pr 0g2 in two separate directories with the same
names as the programs. One typical way to do this would be with atop-level SConst r uct filelikethis:

SConscri pt ([' progl/ SConscript', 'prog2/ SConscript'])
And subsidiary SConscr i pt filesthat look like this;

env = Environnent ()
env. Progran(' progl', ['main.c', 'fool.c', 'foo02.c'])

And this;

env = Environment ()
env. Program(' prog2', ['main.c', 'barl.c', 'bar2.c'])

Then, when we run SConsin the top-level directory, our build looks like:

% scons -Q

cc -o progl/fool.o -c progl/fool.c

cc -0 progl/foo2.0 -c progl/foo2.c

cc -0 progl/main.o -c progl/ main.c

cc -0 progl/progl progl/ main.o progl/fool.o progl/foo2.o0
cCc -0 prog2/barl.o -c prog2/barl.c

CC -0 prog2/bar2.0 -c prog2/ bar2.c

CC -0 prog2/main.o -c prog2/ main.c

CC -0 prog2/ prog2 prog2/ mai n.o prog2/barl.o prog2/bar2.0

Notice the following: First, you can have files with the same names in multiple directories, like mai n. ¢ in the above
example. Second, when building, SCons staysin thetop-level directory (wherethe SConst r uct filelives) andissues
commands that use the path names from the top-level directory to the target and source files within the hierarchy. This
works because SCons reads all the SConscript filesin one pass, interpreting each initslocal context, building up atree
of information, before starting to execute the needed builds in a second pass. Thisis quite different than some other
build tools which implement a heirarcical build by recursing.

Iy
=== SCONS 103

Top-Relative Path Names in Subsidiary SConscr i pt
Files

14.3. Top-Relative Path Names in Subsidiary
SConscri pt Files

If you need to use afile from another directory, it's sometimes more convenient to specify the path to afile in another
directory from the top-level SConst r uct directory, even when you're using that file in asubsidiary SConscr i pt

filein asubdirectory. Y ou can tell SConsto interpret a path name asrelative to thetop-level SConst r uct directory,
not the local directory of the SConscr i pt file, by prepending a# (hash mark) in front of the path name:

env = Environnent ()
env. Progran('prog', ['main.c', '#lib/fool.c', 'foo2.c'])

In this example, the | i b directory is directly underneath the top-level SConstruct directory. If the above
SConscri pt fileisin asubdirectory named sr ¢/ pr og, the output would look like:

% scons -Q

cc -0 lib/fool.o -c lib/fool.c

cc -0 src/prog/foo2.0 -c src/prog/foo2.c

CC -0 src/prog/main.o -c src/prog/ nmain.c

cc -0 src/prog/prog src/prog/main.o lib/fool.o src/prog/foo2.o0

(Noticethat thel i b/ f 001. o object fileisbuilt in the same directory asits source file. See Chapter 15, Separating
Source and Build Trees: Variant Directories, below, for information about how to build the object file in a different
subdirectory.)

A couple of notes on top-relative paths:

1. SCons doesn't care whether you add a slash after the #. Some people consider ' #/ 1 i b/ f 001. ¢' morereadable
than' #1 i b/ f ool. c¢', but they're functionally equivalent.

2. The top-relative syntax is only evaluated by SCons, the Python language itself does not understand about it. This
becomes immediately obvious if you like to use pri nt for debugging, or write a Python function that wants to
evaluate apath. Y ou can force SConsto evaluate atop-rel ative path and produce a string that can be used by Python
code by creating a Node object from it;

path = "#/incl ude"

print("path =", path)
print("force-interpreted path =", Entry(path))
Which shows:

% scons -Q

path = #/incl ude
force-interpreted path = include
scons: ~.' is up to date.

14.4. Absolute Path Names

Of course, you can always specify an absolute path name for afile--for example:

Iy
=== SCONS 104

Sharing Environments (and Other Variables) Between
SConscri pt Files

env = Environment ()
env. Program(' prog', ['main.c', '/usr/joe/lib/fool.c', 'foo2.c'])

Which, when executed, would yield:

% scons -Q

cc -0 src/prog/foo2.0 -c src/prog/foo2.c

cC -0 src/prog/main.o -c src/prog/ main.c

cc -0 /usr/joe/lib/fool.o -c /usr/joel/lib/fool.c

cc -0 src/prog/prog src/prog/main.o /usr/joel/lib/fool.o src/prog/foo2.0

(As was the case with top-relative path names, notice that the/ usr/j oe/ | i b/ f ool. o object fileis built in the
same directory asits source file. See Chapter 15, Separating Source and Build Trees: Variant Directories, below, for
information about how to build the object file in a different subdirectory.)

14.5. Sharing Environments (and Other
Variables) Between SConscri pt Files

Inthepreviousexample, each of thesubsidiary SConscr i pt filescreateditsown construction environment by calling
Envi ronnment separately. This obviously works fine, but if each program must be built with the same construction
variables, it's cumbersome and error-prone to initialize separate construction environments in the same way over and
over in each subsidiary SConscri pt file.

SCons supports the ability to export variables from an SConscri pt file so they can be imported by other
SConscri pt files, thus alowing you to share common initialized values throughout your build hierarchy.

14.5.1. Exporting Variables

There are two ways to export a variable from an SConscr i pt file. The first way isto call the Export function.
Export is pretty flexible - in the simplest form, you pass it a string that represents the name of the variable, and
Export storesthat withitsvaue:

env = Environnent ()
Export (' env')

Y ou may export more than one variable name at atime:

env = Environnent ()
debug = ARGUMENTS| ' debug']
Export (' env', 'debug')

Because a Python identifier cannot contain spaces, Export assumes a string containing spaces is is a shortcut for
multiple variable names to export and splitsit up for you:

env = Environment ()
debug = ARGUVMENTS| ' debug’]

Iy
=== SCONS 105

Importing Variables

Export (' env debug')

You can also pass Export adictionary of values. This form alows the opportunity to export a variable from the
current scope under a different name - in this example, the value of f 00 is exported under the name " bar " :

env Envi r onnment ()

foo " FOO'

args = {"env": env, "bar": foo}
Export (args)

Export will also accept argumentsin keyword style. Thisform adds the ability to create exported variables that have
not actually been set locally in the SConscript file. When used this way, the key is the intended variable name, not a
string representation as with the other forms:

Expor t (MODE="DEBUG', TARGET="ar ni')

The styles can be mixed, though Python function calling syntax requires al non-keyword arguments to precede any
keyword argumentsin the call.

The Export function adds the variables to a global location from which other SConscr i pt files canimport. Calls
to Export are cumulative. When you call Export you are actually updating a Python dictionary, so it is fine to
export avariable you have already exported, but when doing so, the previous valueislost.

The other way to export isyou can specify alist of variables as a second argument to the SConscr i pt function cal:
SConscri pt (' src/ SConscript', 'env')
Or (preferably, for readability) using the expor t s keyword argument:

SConscri pt (' src/ SConscript', exports='env')

These calls export the specified variables to only the listed SConscri pt file(s). You may specify more than one
SConscri pt fileinalist:

SConscri pt (['srcl/ SConscript', 'src2/SConscript'], exports='env')

Thisisfunctionally equivalent to callingthe SConscr i pt function multipletimeswiththesameexpor t s argument,
one per SConscri pt file.

14.5.2. Importing Variables

Once a variable has been exported from a calling SConscr i pt file, it may be used in other SConscr i pt filesby
calingthel nport function:

Iy
=== SCONS 106

Returning Values From an SConscr i pt File

| mport (' env')
env. Program(' prog', ['prog.c'])

Thel nport call makesthe previoudy defined env variable available to the SConscri pt file. Assumingenv isa
construction environment, after import it can be used to build programs, libraries, etc. The use case of passing around
a construction environment is extremely common in larger scons builds.

Likethe Export function, thel mport function can be called with multiple variable names:

| mport (' env', 'debug')
env = env. Cl one(DEBUG=debug)
env. Progran(' prog', ['prog.c'])

In this example, we pull in the common construction environment env, and use the value of the debug variable to
make amodified copy by passing that to aCl one call.

Thel mport function will (like Expor t) split a string containing white-space into separate variable names:

| mport (' env debug')
env = env. Cl one(DEBUG=debug)
env. Progran(' prog', ['prog.c'])

| mport prefersalocal definitionto aglobal one, sothat if thereisaglobal export of f 00, and the calling SConscript
has exported f 00 to this SConscript, the import will find the f oo exported to this SConscript.

Lastly, as aspecial case, you may import all of the variables that have been exported by supplying an asterisk to the
| mport function:;

| mport (' *")
env = env. C one(DEBUG=debug)

env. Progran(' prog', ['prog.c'])

If you're dealing with alot of SConscri pt files, this can be alot simpler than keeping arbitrary lists of imported
variables up to date in each file.

14.5.3. Returning Values From an SConscri pt File

Sometimes, you would like to be able to use information from a subsidiary SConscr i pt file in some way. For
exampl e, suppose that you want to create one library from object files built by several subsidiary SConscr i pt files.
Y ou can do this by using the Ret ur n function to return values from the subsidiary SConscr i pt filesto the calling
file. Like I mport and Export, Ret ur n takes a string representation of the variable name, not the variable name
itself.

If, for example, we have two subdirectoriesf 0o and bar that should each contribute an object fileto alibrary, what

wed like to be able to do is callect the object files from the subsidiary SConscr i pt calslikethis:

env = Environment ()
Export (' env')

Iy
=== SCONS 107

Returning Values From an SConscr i pt File

objs =[]

for subdir in ['foo', "bar']:
o0 = SConscript (" %/ SConscript' % subdir)
obj s. append(o)

env. Li brary(' prog', objs)

We can do this by using the Ret ur n functioninthef oo/ SConscri pt filelikethis:

| nport (' env')
obj = env. vject('foo.c')
Return(' obj ")

(The corresponding bar / SConscr i pt file should be pretty obvious.) Then when we run SCons, the object files
from the subsidiary subdirectories are all correctly archived in the desired library:

% scons -Q

cc -0 bar/bar.o -c bar/bar.c

cc -o foo/foo.0 -c foo/foo.c

ar rc libprog.a foo/foo.o0 bar/bar.o
ranlib |ibprog.a

Iy
=== SCONS 108

15 Separating Source and
Build Trees: Variant Directories

It is often useful to keep built files completely separate from the source files. Two main benefits are the ability to have
different configurations simultaneously without build conflicts, and being version-control friendly.

Consider if you have a project to build an embedded software system for a variety of different controller hardware.
The system is able to share alot of code, so it makes sense to use a common source tree, but certain build options
in the source code and header files differ. For a regular in-place build, the build outputs go in the same place as the
source code. If you build Controller A first, followed by Controller B, on the Controller B build everything that uses
different build options has to be rebuilt since those objects will be different (the build lines, including preprocessor
defines, are part of SCons's out-of-date calculation for this reason). If you go back and build for Controller A again,
things have to be rebuilt again for the same reason. However, if you can separate the locations of the output files, so
each controller has its own location for build outputs, this problem can be avoided.

Having a separated build tree also helps you keep your source tree clean - there isless chance of accidentally checking
in build products to version control that were not intended to be checked in. You can add a separated build directory
to your version control system's list of items not to track. Y ou can even remove the whole build tree with a single
command without risking removing any of the source code.

The key to making this separation work is the ability to do out-of-tree builds: building under a separate root than the
sources being built. You set up out of tree builds by establishing what SCons calls a variant directory, a place where
you can build a single variant of your software (of course you can define more than one of these if you need to).
Since SCons tracks targets by their path, it is able to distinguish build products like bui | d/ A/ net wor k. obj of
the Controller A build from bui | d/ B/ net wor k. obj of the Controller B build, thus avoiding conflicts.

SCons providestwo waysto establish variant directories, onethrough the SConscr i pt functionthat we have already
seen, and the second through a more flexible Var i ant Di r function.

The variant directory mechanism does support doing multiple builds in one invocation of SCons, but the remainder
of this chapter will focus on setting up asingle build. Y ou can combine these techniques with ones from the previous
chapter and elsewhere in this Guide to set up more complex scenarios.

Note

TheVari ant Di r function used to be called Bui | dDi r, aname which was changed because it turned out
to be confusing: the SCons functionality differs from a familiar model of a "build directory" implemented
by certain other build systems like GNU Autotools. You might still find references to the old name on the
Internet in postings about SCons, but it no longer works.

Specifying aVariant Directory Tree as Part of an
SConscri pt Cal

15.1. Specifying a Variant Directory Tree as
Part of an SConscri pt Call

The most straightforward way to establish a variant directory tree relies on the fact that the usual way to set up a
build hierarchy isto have an SConscri pt filein the source directory. If you passavari ant _di r argument to
the SConscri pt function cal:

SConscri pt (' src/ SConscript', variant _dir="build")

SCons will then build all of the filesin the bui | d directory:

%ls src

SConscript hello.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/ hello.o

%ls src
SConscript hello.c
%I|s build

SConscript hello hello.c hello.o

No files were built in sr c: the object file bui | d/ hel | 0. 0 and the executable file bui | d/ hel | o were built in
thebui | d directory, as expected. But notice that even though our hel | 0. c fileactually livesin the sr ¢ directory,
SCons has compiled abui | d/ hel | o. c fileto create the object file, and that fileisnow seenin bui | d.

Y ou can ask SCons to show the dependency tree to illustrate a bit more:

% scons -Q --tree=prune
cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/hello.o
+-.
SConst r uct
bui | d
+- bui | d/ SConscri pt
+-buil d/hello
| +-build/hello.o
| +-buil d/ hello.c
+-buil d/ hello.c
+- [bui I d/ hel | 0. 0]
+-src
+- src/ SConscri pt
+-src/hello.c

+
+
I
I
I
I
I
I

What's happened is that SCons has duplicated thehel | o. ¢ filefromthesr ¢ directory to the bui | d directory, and
built the program from there (it also duplicated SConscr i pt). The next section explains why SCons does this.

The nice thing about the SConscr i pt approachisitisamost invisible to you: this build looks just like an ordinary
in-place build except for the extravar i ant _di r argument in the SConscr i pt call. SCons handles al the path
adjustments for the out of tree bui | d directory whileit processes that SConscript file.

Iy
=== SCONS 110

Why SCons Duplicates Source Filesin aVariant
Directory Tree

15.2. Why SCons Duplicates Source Files in a
Variant Directory Tree

When you set up avariant directory SCons conceptually behaves asif you requested abuild in that directory. Asnoted
in the previous chapter, all builds actually happen from the top level directory, but as an aid to understanding how
SCons operates, think of it as build in place in the variant directory, not build in source but send build artifacts to
the variant directory. It turns out in place builds are easier to get right than out of tree builds - so by default SCons
simulatesanin place build by making the variant directory ook just like the source directory. The most straightforward
way to do that is by making copies of the files needed for the build.

The most direct reason to duplicate source filesin variant directoriesis simply that some tools (mostly older versions)
are written to only build their output files in the same directory as the source files - such tools often don't have any
option to specify the output file, and the tool just uses a predefined output file name, or uses a derived variant of the
source file name, dropping the result in the same directory. In this case, the choices are either to build the output file
in the source directory and move it to the variant directory, or to duplicate the source filesin the variant directory.

Additionally, relative references between files can cause problems which are resolved by just duplicating the hierarchy
of sourcefilesinto the variant directory. Y ou can seethisat work in use of the C preprocessor #i ncl ude mechanism
with double quotes, not angle brackets:

#i ncl ude "file.h"

The de facto standard behavior for most C compilersin this caseisto first look in the same directory asthe sourcefile
that containsthe #i ncl ude line, then to look in the directories in the preprocessor search path. Add to this that the
SConsimplementation of support for code repositories (described below) meansnot all of thefileswill befound inthe
samedirectory hierarchy, and the simplest way to make surethat theright includefileisfound isto duplicate the source
filesinto the variant directory, which provides a correct build regardless of the original location(s) of the sourcefiles.

Although source-file duplication guarantees a correct build even in these edge cases, it can usually be safely disabled.
The next section describes how you can disable the duplication of source filesin the variant directory.

15.3. Telling SCons to Not Duplicate Source
Files in the Variant Directory Tree

In most cases and with most tool sets, SCons can use sources directly from the source directory without duplicating
them into the variant directory before building, and everything will work just fine. Y ou can disable the default SCons
duplication behavior by specifying dupl i cat e=Fal se when you call the SConscri pt function:

SConscri pt (' src/ SConscript', variant _dir="build', duplicate=False)

When this flag is specified, the results of abuild look more like the mental model people may have from other build
systems - that is, the output files end up in the variant directory while the source files do not.

%Ils src
SConscr i pt
hel |l o.c

Iy
=== SCONS 111

TheVari ant Di r Function

% scons -Q
cc -c src/hello.c -o build/hello.o
cc -0 build/hello build/hello.o

%I|s build
hel | o
hell 0.0

If disabling duplication causes any problems, just return to the more cautious approach by letting SCons go back to
duplicating files.

15.4. The Vari ant Di r Function

You can also use the Var i ant Di r function to establish that target files should be built in a separate directory tree
from the sourcefiles:

VariantDir('build , "src')
env = Environment ()
env. Progran(' build/ hello.c")

When using thisform, you have to tell SCons that sources and targets arein the variant directory, and those references
will trigger the remapping, necessary file copying, etc. for an already established variant directory. Here is the same
example in amore spelled out form to show this more clearly:

VariantDir('build , "src')
env = Environnent ()
env. Program(target =" buil d/ hell o', source=["'build/hello.c'])

When using the Var i ant Di r function directly, SCons still duplicates the source files in the variant directory by
default:

%Ils src

hell o.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/ hello.o

%Ils build

hello hello.c hello.o

Y ou can specify the same dupl i cat e=Fal se argument that you can specify for an SConscri pt cal:

VariantDir('build, "'"src', duplicate=Fal se)
env = Environnent ()
env. Progran(' buil d/ hello.c")

In which case SCons will disable duplication of the sourcefiles:

%Ils src
hel |l o.c
&

'—‘-‘ SCONS 112

Using Var i ant Di r Withan SConscri pt File

% scons -Q

cc -0 build/hello.o -c src/hello.c
cc -0 build/hello build/ hello.o
%Ils build

hello hello.o

15.5. Using Var i ant Di r With an SConscr i pt
File

Evenwhen using the Var i ant Di r function, itismore natural to useit with asubsidiary SConscr i pt file, because
then you don't have to adjust your individual build instructions to use the variant directory path. For example, if the
src/ SConscri pt lookslikethis:

env = Environnent ()
env. Progran(' hello.c')

Then our SConst r uct file could look like:

VariantDir('build, "src')
SConscri pt (' bui | d/ SConscript')

Yielding the following output:

%Ils src

SConscript hello.c

% scons -Q

cc -0 build/hello.o -c build/hello.c
cc -0 build/hello build/ hello.o
%Ils build

SConscript hello hello.c hello.o

This is completely equivaent to the use of SConscri pt with the vari ant _di r argument from earlier in this
chapter, but did require callng the SConscript using the already established variant directory path to trigger that
behavior. If you call SConscri pt (' src/ SConscri pt') youwould get anormal in-place buildinsrc.

15.6. Using A ob with VariantDi r

The @ ob file name pattern matching function works just as usual when using Var i ant Di r . For example, if the
src/ SConscri pt lookslikethis:

env = Environment ()
env. Program(' hello', @ob('*.c"))

Then with the same SConst r uct file asin the previous section, and source filesf 1. ¢ and f 2. ¢ in src, wewould
see the following output:

%Ils src

Iy
=== SCONS 113

Variant Build Examples

SConscript fl.c f2.c¢ f2.h

% scons -Q

cc -0 build/fl.o0 -c build/fl.c

cc -0 build/f2.0 -c build/f2.c

cCc -0 build/hello build/fl.0 build/f2.0

% I|s build

SConscript fl.c fl.o f2.¢c f2.h f2.0 hello

The G ob function returns Nodesinthe bui | d/ tree, asyou'd expect.

15.7. Variant Build Examples

Thevari ant _di r keyword argument of the SConscr i pt function provides everything we need to show how easy
it isto create variant builds using SCons. Suppose, for example, that we want to build a program for both Windows
and Linux platforms, but that we want to build it in directory on a network share with separate side-by-side build
directories for the Windows and Linux versions of the program. We have to do alittle bit of work to construct paths,
to make sure unwanted location dependencies don't creep in. The top-relative path reference can be useful here. To
avoid writing conditional code based on platform, we can build thevar i ant _di r path dynamically:

pl atform = ARGUVENTS. get (' OS', Platform))

i ncl ude = "#export/$PLATFORM i ncl ude"
[ib = "#export/$PLATFORM | i b"
bin = "#export/$PLATFORM bi n"

env = Environment (
PLATFORMEpI at f or m

Bl NDI R=bi n,
I NCDI R=i ncl ude,
LI BDI R=l i b,

CPPPATH=[i ncl ude] ,
LI BPATH=[| i b],
LI BS=' worl d',

)
Export (' env')

env. SConscri pt (' src/ SConscript', variant _dir="buil d/ $PLATFORM)

This SConstruct file, when run on a Linux system, yields:

% scons -Q OS=l i nux

Install file: "build/linux/world/ world.h" as "export/I|inux/include/world.h"

cc -0 build/linux/hello/hello.o -c -lexport/Ilinux/include build/linux/hello/hello.c
cc -0 build/linux/world/world.o -c -lexport/Ilinux/include build/linux/world/ world.c
ar rc build/linux/world/libworld.a build/linux/world/ world.o

ranlib build/linux/world/libworld.a

Install file: "build/linux/world/libworld. a" as "export/linux/lib/libworld.a"

cc -0 build/linux/hello/hello build/linux/hello/hello.o -Lexport/linux/lib -lworld
Install file: "build/linux/hellol/hello" as "export/linux/bin/hello"

The same SConstruct file on Windows would build:

Iy
=== SCONS 114

Variant Build Examples

C.\>scons -Q OS=wi ndows

Install file: "build/ wi ndows/world/world.h" as "export/w ndows/i ncl ude/worl d. h"

cl /Fobuil d\wi ndows\ hel | o\ hel | 0. obj /c buil d\w ndows\ hel | o\ hel | 0. ¢ /nol ogo /1 export\w ndow
cl /Fobuil d\wi ndows\ wor | d\wor | d. obj /c buil d\w ndows\wor| d\worl d.c /nol ogo /1 export\w ndow
lib /nol ogo /QUT: bui | d\wi ndows\wor | d\worl d.lib buil d\w ndows\wor| d\wor| d. obj

Install file: "build/ wi ndows/world/world.lib" as "export/w ndows/l|ib/world.lib"

i nk /nol ogo /QUT: bui | d\wi ndows\ hel | o\ hel | 0. exe /LI BPATH: export\w ndows\lib world.lib buil
enbedMani f est ExeCheck(target, source, env)

Install file: "build/ wi ndows/ hell o/ hello.exe" as "export/w ndows/ bi n/ hell o. exe"

In order to build severa variants at once when using the var i ant _di r argument to SConscr i pt, you can call
the function repeatedely - this example does so in aloop. Note that the SConscr i pt trick of passing alist of script
files, or alist of source directories, does not work with vari ant _di r, SCons allows only a single SConscr i pt
tobegivenif vari ant _di r isused.

env = Environnment (OS=ARGUVMENTS. get (' OS'))
for os in ['newell', 'post']:
SConscri pt (' src/ SConscript', variant _dir="build/' + o0s)

Iy
=== SCONS 115

16 Building From Code
Repositories

Often, a software project will have one or more central repositories, directory treesthat contain source code, or derived
files, or both. Y ou can eliminate additional unnecessary rebuilds of files by having SCons use files from one or more
code repositories to build filesin your local build tree.

16.1. The Reposi t ory Method

It's often useful to allow multiple programmers working on aproject to build software from source files and/or derived
filesthat are stored in a centrally-accessible repository, adirectory copy of the source code tree. (Note that thisis not
the sort of repository maintained by a source code management system like BitK eeper, CV'S, or Subversion.) Y ou use
the Reposi t or y method to tell SCons to search one or more central code repositories (in order) for any source files
and derived files that are not present in the local build tree:

env = Environnent ()
env. Progran(' hello.c")
Repository('/usr/repositoryl', '/usr/repository2')

MultiplecallstotheReposi t or y method will simply add repositoriesto the global list that SCons maintains, withthe
exception that SCons will automatically eliminate the current directory and any non-existent directories from the list.

16.2. Finding source files in repositories

The above example specifies that SCons will first search for files under the / usr/ reposi t or y1 tree and next
under the/ usr/ r eposi t or y2 tree. SCons expects that any filesit searches for will be found in the same position
relativeto thetop-level directory. Inthe above example, if thehel | 0. ¢ fileisnot foundinthelocal build tree, SCons
will search first for a/ usr/ reposi t oryl/ hel | o. c fileand thenfor a/ usr/ r eposi t ory2/ hel | o. c file
touseinitsplace.

So giventhe SConst r uct fileabove, if thehel | 0. ¢ file existsin thelocal build directory, SConswill rebuild the
hel | o program as normal:

% scons -Q
cc -0 hello.o -c hello.c

Finding #i ncl ude filesin repositories

cc -o hello hello.o

If, however, there is no local hel | 0. c file, but one exists in / usr/ reposi t or yl, SCons will recompile the
hel | o program from the sourcefileit finds in the repository:

% scons -Q
cc -0 hello.o -c /usr/repositoryl/hello.c
cc -0 hello hello.o

And similarly, if thereisnolocal hel | o. c fileandno/ usr/reposi toryl/ hel | 0. c, but oneexistsin/ usr/
repository2:

% scons -Q
cc -0 hello.o -c /usr/repository2/hello.c
cc -0 hello hello.o

The d ob function understands about repositories, and will use the same matching algorithm as described for
explicitly-listed sources.

16.3. Finding #i ncl ude files in repositories

We've already seen that SConswill scan the contents of asourcefilefor #i ncl ude file namesand realize that targets
built from that source file also depend on the #i ncl ude file(s). For each directory in the $CPPPATH list, SCons
will actually search the corresponding directoriesin any repository trees and establish the correct dependencies on any
#i ncl ude filesthat it findsin repository directory.

Unless the C compiler also knows about these directories in the repository trees, though, it will be unable to find the
#i ncl ude files. If, for example, the hel | 0. ¢ file in our previous example includes the hel | 0. h in its current
directory, and the hel | 0. h only existsin the repository:

% scons -Q
cc -0 hello.o -c hello.c
hello.c:1: hello.h: No such file or directory

In order to inform the C compiler about the repositories, SCons will add appropriate - | flags to the compilation
commands for each directory inthe SCPPPATHIist. Soif we add the current directory to the construction environment
$CPPPATH like so:

env = Environment (CPPPATH = ['."])
env. Progran(' hello.c")
Repository('/usr/repositoryl')

Then re-executing SCons yields:
% scons -Q
cc -0 hello.o -c -1. -Il/usr/repositoryl hello.c

cc -o hello hello.o

The order of the - | options replicates, for the C preprocessor, the same repository-directory search path that SCons
uses for its own dependency analysis. If there are multiple repositories and multiple $CPPPATH directories, SCons

Iy
=== SCONS 117

Limitationson #i ncl ude filesin repositories

will add the repository directories to the beginning of each $CPPPATH directory, rapidly multiplying the number of
- | flags. If, for example, the $CPPPATH contains three directories (and shorter repository path names!):

env = Environment (CPPPATH = ['dirl", 'dir2', 'dir3'])
env. Progranm(' hello.c")
Repository('/r1', "/r2")

Then well end up with nine - | options on the command line, three (for each of the $SCPPPATH directories) times
three (for the local directory plus the two repositories):
% scons -Q

cc -0 hello.o -c -Idirl -1/r1/dirl -1/r2/dirl -Idir2 -1/r1/dir2 -1/r2/dir2 -1dir3 -1/r1/d
cc -o hello hello.o

16.3.1. Limitations on #i ncl ude files in repositories

SConsrelies on the C compiler's- | optionsto control the order in which the preprocessor will search the repository
directories for #i ncl ude files. This causes a problem, however, with how the C preprocessor handles #i ncl ude
lines with the file name included in double-quotes.

Aswe've seen, SCons will compilethe hel | 0. ¢ file from the repository if it doesn't exist in the local directory. If,
however, thehel | 0. c filein the repository containsa#i ncl ude line with the file name in double quotes:

#i ncl ude "hell o. h"

i nt
mai n(i nt argc, char *argv[])
{
printf (HELLO MESSAGE) ;
return (0);
}

Thenthe C preprocessor will alwaysuseahel | o. h filefromtherepository directory first, evenif thereisahel | 0. h
filein thelocal directory, despite the fact that the command line specifies- | asthe first option:

% scons -Q
cc -0 hello.o -c -1. -l/usr/repositoryl /usr/repositoryl/hello.c
cc -0 hello hello.o

This behavior of the C preprocessor--aways search for a#i ncl ude filein double-quotes first in the same directory
as the source file, and only then search the - | --can not, in general, be changed. In other words, it's a limitation that
must be lived with if you want to use code repositoriesin thisway. There are three ways you can possibly work around
this C preprocessor behavior:

1. Some modern versions of C compilers do have an option to disable or control this behavior. If so, add that option
to $CFLAGS (or $CXXFLAGS or both) in your construction environment(s). Make sure the option is used for all
construction environments that use C preprocessing!

2. Change all occurrences of #i ncl ude "file.h" to#i nclude <file.h>. Useof #i ncl ude with angle
brackets does not have the same behavior--the - | directories are searched first for #i ncl ude files--which gives
SCons direct control over the list of directories the C preprocessor will search.

Iy
=== SCONS 118

Finding the SConst r uct fileinrepositories

3. Requirethat everyone working with compilation from repositories check out and work on entire directories of files,
not individual files. (If you uselocal wrapper scriptsaround your source code control system's command, you could
add logic to enforce this restriction there.

16.4. Finding the SConst r uct file in
repositories

SCons will also search in repositories for the SConst r uct file and any specified SConscr i pt files. This poses
a problem, though: how can SCons search a repository tree for an SConst r uct fileif the SConst ruct fileitself
contains the information about the pathname of the repository? To solve this problem, SCons allows you to specify
repository directories on the command line using the - Y option:

% scons -Q -Y /usr/repositoryl -Y /usr/repository?2

When looking for source or derived files, SCons will first search the repositories specified on the command line, and
then search the repositories specified in the SConst r uct or SConscri pt files.

16.5. Finding derived files in repositories

If arepository contains not only source files, but also derived files (such as object files, libraries, or executables),
SCons will perform its norma MD5 signature calculation to decide if a derived file in a repository is up-to-date, or
the derived file must be rebuilt in the local build directory. For the SCons signature calculation to work correctly, a
repository tree must contain the . sconsi gn filesthat SCons uses to keep track of signature information.

Usually, this would be done by a build integrator who would run SCons in the repository to create all of its derived
filesand . sconsi gn files, or who would run SCons in a separate build directory and copy the resulting tree to the
desired repository:

% cd /usr/repositoryl

% scons -Q

cc -o filel.o -c filel.c

cc -o file2.0 -c file2.c

cc -o hello.o -c hello.c

cc -0 hello hello.o filel.o file2.0

(Notethat thisis safe even if the SConst r uct filelists/ usr/ reposi t oryl asarepository, because SCons will
remove the current build directory from its repository list for that invocation.)

Now, with the repository populated, we only need to create the one local source file we're interested in working with
at the moment, and use the - Y option to tell SCons to fetch any other filesit needs from the repository:

% cd $HOVE/ bui | d

%edit hello.c

% scons -Q -Y /usr/repositoryl

cc -c -0 hello.o hello.c

cc -0 hello hello.o /usr/repositoryl/filel.o /usr/repositoryl/file2.o

Noticethat SConsrealizesthat it does not need to rebuild local copiesfi | el. oandfi | e2. o files, but instead uses
the already-compiled files from the repository.

Iy
=== SCONS 119

Guaranteeing local copies of files

16.6. Guaranteeing local copies of files

If the repository tree contains the compl ete results of a build, and we try to build from the repository without any files
in our local tree, something moderately surprising happens:

% kdi r $HOVE/ bui | d2

% cd $HOVE/ bui | d2

% scons -Q -Y /usr/all/repository hello
scons: " hello' is up-to-date.

Why does SCons say that the hel | o program is up-to-date when there is no hel | o program in the loca build
directory?Becausetherepository (not thelocal directory) containsthe up-to-datehel | o program, and SConscorrectly
determines that nothing needs to be done to rebuild that up-to-date copy of thefile.

There are, however, many times when you want to ensure that a local copy of afile always exists. A packaging or
testing script, for example, may assume that certain generated files exist locally. To tell SConsto make a copy of any
up-to-date repository filein the local build directory, usethe Local function:

env = Environment ()
hell o = env. Progran(' hello.c")
Local (hel | 0)

If we then run the same command, SCons will make aloca copy of the program from the repository copy, and tell
you that it is doing so:

% scons -Y /usr/all/repository hello
Local copy of hello from/usr/all/repository/hello
scons: " hello' is up-to-date.

(Noticethat, because the act of making thelocal copy isnot considered a"build" of thehel | o file, SCons still reports
that it is up-to-date.)

Iy
=== SCONS 120

17 Extending SCons: Writing
Your Own Builders

Although SCons provides many useful methods for building common software products (programs, libraries,
documents, etc.), you frequently want to be able to build some other type of file not supported directly by SCons.
Fortunately, SCons makesiit very easy to define your own Builder objects for any custom file types you want to build.
(Infact, the SCons interfaces for creating Builder objects are flexible enough and easy enough to use that all of the the
SCons built-in Builder objects are created using the mechanisms described in this section.)

17.1. Writing Builders That Execute External
Commands

Thesimplest Builder to createisonethat executes an external command. For example, if wewant to build an output file
by running the contents of theinput file through a command named f oobui | d, creating that Builder might look like:

bl d = Buil der(action="foobuild < $SOURCE > $TARCET')

All the above line does is create a free-standing Builder object. The next section will show how to actually useit.

17.2. Attaching a Builder to a Construction
Environment

A Builder object isn't useful until it's attached to a construction environment so that we can call it to arrange for filesto
be built. Thisis done through the $BUI LDERS construction variable in an environment. The $BUI LDERS variableis
a Python dictionary that maps the names by which you want to call various Builder objects to the objects themselves.
For example, if we want to call the Builder we just defined by the name Foo, our SConst r uct file might look like:

bl d
env

Bui | der (acti on='foobuild < $SOURCE > $TARGET")
Envi ronnent (BU LDERS={"' Foo' : bl d})

With the Builder attached to our construction environment with the name Foo, we can now actually call it like so:

Letting SCons Handle The File Suffixes

env. Foo('file.foo', "file.input')

Then when we run SCons it looks like:

% scons -Q
foobuild < file.input > file.foo

Note, however, that thedefault $BUI L DERS variablein aconstruction environment comeswith adefault set of Builder
objects already defined: Pr ogr am Li br ar y, etc. And when we explicitly set the $BUI LDERS variable when we
create the construction environment, the default Builders are no longer part of the environment:

bl d = Buil der(action='foobuild < $SOURCE > $TARGET')
env Envi r onnent (BUl LDERS={' Foo' : bl d})

env. Foo('file.foo', 'file.input')

env. Progran(' hello.c")

% scons -Q
AttributeError: 'SConsEnvironnent' object has no attribute 'Prograni:
File "/home/ ny/ project/SConstruct”, line 7:
env. Progran(' hello.c")

To be able to use both our own defined Builder objects and the default Builder objects in the same construction
environment, you can either add to the $BUI LDERS variable using the Append function:;

env = Environnent ()

bl d = Buil der(action='foobuild < $SOURCE > $TARGET')
env. Append(BUl LDERS={' Foo' : bl d})

env. Foo('file.foo', 'file.input')

env. Progran(' hello.c")

Or you can explicitly set the appropriately-named key in the $BUI LDERS dictionary:

env Envi ronnent ()

bl d Bui | der (acti on='foobuil d < $SOURCE > $TARGET')
env[' BU LDERS][' Foo'] = bld

env. Foo('file.foo', "file.input')

env. Progranm(' hello.c")

Either way, the same construction environment can then use both the newly-defined Foo Builder and the default
Pr ogr amBuilder:

% scons -Q

foobuild < file.input > file.foo
cc -0 hello.o -c hello.c

cc -0 hello hello.o

17.3. Letting SCons Handle The File Suffixes

By supplying additional information when you create a Builder, you can let SCons add appropriate file suffixes to the
target and/or the source file. For example, rather than having to specify explicitly that you want the Foo Builder to

Iy
=== SCONS 122

Builders That Execute Python Functions

buildthefi | e. f oo target filefromthef i | e. i nput sourcefile, you can givethe. f oo and. i nput suffixesto
the Builder, making for more compact and readable calls to the Foo Builder:

bl d = Bui | der (
action='foobuild < $SOURCE > $TARGET',
suffix='.foo',
src_suffix=".input',
)
env = Environment (BU LDERS={"' Foo' : bl d})
env. Foo('filel")
env. Foo('file2")

% scons -Q
foobuild < filel.input > filel.foo
foobuild < file2.input > file2.foo

You can aso supply apr ef i x keyword argument if it's appropriate to have SCons append a prefix to the beginning
of target file names.

17.4. Builders That Execute Python Functions

In SCons, you don't have to call an external command to build afile. Y ou can, instead, define a Python function that
aBuilder object can invoke to build your target file (or files). Such a builder function definition looks like:

def build function(target, source, env):
Code to build "target" from "source"
return None

The arguments of a builder function are:

target
A list of Node objectsrepresenting thetarget or targetsto be built by thisfunction. The file names of thesetarget(s)
may be extracted using the Python st r function.

source
A list of Node objects representing the sources to be used by this function to build the targets. The file names of
these source(s) may be extracted using the Python st r function.

env
The construction environment used for building the target(s). The function may use any of the environment's
construction variablesin any way to affect how it builds the targets.

Thefunction will be constructed as a SCons FunctionAction and must return a0 or None valueif thetarget(s) are built
successfully. Thefunction may raise an exception or return any non-zero valueto indicatethat the build isunsuccessful.
For more information on Actions see the Action Objects section of the man page.

Once you've defined the Python function that will build your target file, defining a Builder object for itisassimpleas
specifying the name of the function, instead of an external command, as the Builder'sact i on argument:

def build function(target, source, env):

Iy
=== SCONS 123

Builders That Create Actions Using a Generator

Code to build "target” from "source"
return None

bl d = Bui l der (
action=bui |l d_functi on,
suffix=".foo',
src_suffix=".input',
)
env = Environment (BU LDERS={"' Foo' : bl d})
env. Foo('file")

And notice that the output changes dlightly, reflecting the fact that a Python function, not an external command, is
now called to build the target file:

% scons -Q
build function(["file.foo"], ["file.input"])

17.5. Builders That Create Actions Using a
Generator

SCons Builder objects can create an action "on the fly" by using a function called a Generator. (Note: this is not
the same thing as a Python generator function described in PEP 255 [https://www.python.org/dev/peps/pep-0255/])
This provides a great deal of flexibility to construct just the right list of commands to build your target. A generator
looks like:

def generate_actions(source, target, env, for_signature):
return 'foobuild < % > %' % (target[0], source[0])

The arguments of a generator are:

source
A list of Node objects representing the sources to be built by the command or other action generated by this
function. The file names of these source(s) may be extracted using the Python st r function.

tar get
A list of Node objects representing the target or targets to be built by the command or other action generated by
this function. The file names of these target(s) may be extracted using the Python st r function.

env
The construction environment used for building the target(s). The generator may use any of the environment's
construction variablesin any way to determine what command or other action to return.

for_signature
A flag that specifies whether the generator is being called to contribute to abuild signature, as opposed to actually
executing the command.

The generator must return a command string or other action that will be used to build the specified target(s) from the
specified source(s).

Once you've defined a generator, you create a Builder to use it by specifying the gener at or keyword argument
instead of act i on.

Iy
=== SCONS 124

https://www.python.org/dev/peps/pep-0255/
https://www.python.org/dev/peps/pep-0255/

Builders That Modify the Target or Source Lists Using an
Emitter

def generate_actions(source, target, env, for_signature):
return 'foobuild < % > %' % (source[0], target[0])

bl d = Buil der(
gener at or =gener at e_act i ons,
suffix=".foo',
src_suffix=".input',

env = Environment (BU LDERS={"' Foo' : bl d})
env. Foo('file")

% scons -Q
foobuild < file.input > file.foo

Note that it'sillegal to specify bothanact i on and agener at or for aBuilder.

17.6. Builders That Modify the Target or Source
Lists Using an Emitter

SCons supports the ability for a Builder to modify the lists of target(s) from the specified source(s). Y ou do this by
defining an emitter function that takes asits argumentsthe list of the targets passed to the builder, thelist of the sources
passed to the builder, and the construction environment. The emitter function should return the modified lists of targets
that should be built and sources from which the targets will be built.

For example, suppose you want to defineaBuilder that alwayscallsafoobuild program, and you want to automatically
add a new target file named new _t ar get and a new source file named new_sour ce whenever it's caled. The
SConst ruct filemight look like this:

def nodify targets(target, source, env):
t arget . append(' new target')
sour ce. append(' new_sour ce')
return target, source

bl d = Bui | der (
action='foobuild $TARGETS - $SOURCES',
suffix='.foo',
src_suffix=".input',
em tter=nodi fy targets,
)
env = Environnment (BU LDERS={"' Foo' : bl d})
env. Foo('file")

And would yield the following output:

% scons -Q
foobuild file.foo new target - file.input new source

One very flexible thing that you can do is use a construction variabl e to specify different emitter functionsfor different
construction environments. To do this, specify a string containing a construction variable expansion as the emitter

Iy
=== SCONS 125

Modifying a Builder by adding an Emitter

when you call the Bui | der function, and set that construction variable to the desired emitter function in different
construction environments:

bl d = Buil der (
action='./nmy_conmand $SOURCES > $TARCET',
suffix='.foo',
src_suffix=".input',
emtter='$W_EM TTER ,

def nodifyl(target, source, env):
return target, source + ['nodifyl.in']

def nodify2(target, source, env):
return target, source + ['nodify2.in']

envl = Environnent (BU LDERS={' Foo': bld}, MY_EM TTER=nodi fy1l)
env2 = Environnent (BU LDERS={' Foo': bl d}, MY_EM TTER=nodi fy2)
envl. Foo('filel")
env2. Foo('file2")

In this example, themodi f y1. i n and nodi fy2. i n files get added to the source lists of the different commands:

% scons -Q
./my_command filel.input nodifyl.in > filel.foo
./my_command file2.input nodify2.in > file2.foo

17.7. Modifying a Builder by adding an Emitter

Defining an emitter to work with a custom Builder is a powerful concept, but sometimes all you really want is to be
able to use an existing builder but change its concept of what targets are created. In this case, trying to recreate the
logic of an existing Builder to supply a special emitter can be alot of work. Thetypical case for thisis when you want
to use a compiler flag that causes additional files to be generated. For example the GNU linker accepts an option -
Map which outputs alink map to the file specified by the option’'s argument. If this option isjust supplied to the build,
SConswill not consider the link map file atracked target, which has various undesirabl e efffects.

To help with this, SCons provides construction variables which correspond to a few standard builders:
$PROGEM TTER for Program $LI BEM TTER for Li br ary; $SHLI BEM TTER for Shar edLi brary and
$LDMODULEEM TTER for Loadabl eMbdul e;. Adding an emitter to one of these will cause it to be invoked in
addition to any existing emitter for the corresponding builder.

This example adds map creation as a linker flag, and modifies the standard Pr ogr am emitter to know that map
generation is a side-effect:

env = Environment ()
map_fil ename = "${ TARGET. nanme}. map"

def map_em tter(target, source, env):
t ar get . append(map_fi |l enane)
return target, source

Iy
=== SCONS 126

Where To Put Y our Custom Builders and Tools

env. Append(LI NKFLAGS="-W, - Map={},--cref".format (map_fil enane))
env. Append(PROGEM TTER=map_eni tter)
env. Progranm(' hello.c")

If you run this example, adding an option to tell SCons to dump some information about the dependencies it knows,
it shows the map file option in use, and that SCons indeed knows about the map file, it's not just a silent side effect
of the compiler:

% scons -Q --tree=prune
cc -0 hello.o -c hello.c
cc -o hello -W, - Map=hel | 0. map, --cref hello.o
+-.

+- SConst r uct

+-hell o

| +-hello.o

| +-hello.c

+-hello.c

+- hel | 0. map

| +-[hello.o]

+-[hel | 0. 0]

17.8. Where To Put Your Custom Builders and
Tools

The si t e_scons directories give you a place to put Python modules and packages that you can import into your
SConscri pt files (at the top level) add-on tools that can integrate into SCons (inasi t e_t ool s subdirectory),
andasite_scons/site_init. py filethat getsread before any SConst r uct or SConscr i pt file, allowing
you to change SCons's default behavior.

Each system type (Windows, Mac, Linux, etc.) searches a canonical set of directoriesfor si t e_scons; seethe man
page for details. The top-level SConstruct'ssi t e_scons dir (that is, the one in the project) is always searched last,
and itsdir is placed first in the tool path so it overrides all others.

If you get atool from somewhere (the SConswiki or athird party, for instance) and you'd like to useit in your project,
asi te_scons dir isthe simplest place to put it. Tools come in two flavors; either a Python function that operates
onan Envi r onnent or aPython module or package containing two functions, exi st s() andgenerate().

A single-function Tool canjust beincludedinyour sit e_scons/site_init. py filewhereit will be parsed and
made available for use. For instance, you could haveasi t e_scons/site_i nit. py filelikethis:

def TOOL_ADD HEADER(env):
"""A Tool to add a header from $HEADER to the source file"""
add_header = Buil der (
acti on=[' echo "$HEADER' > $TARGET', 'cat $SOURCE >> $TARGET']
)

env. Append(BU LDERS={"' AddHeader': add_header})
env[' HEADER | ="' # set default val ue

and aSConst r uct likethis:

Iy
=== SCONS 127

Where To Put Y our Custom Builders and Tools

Use TOOL_ADD HEADER from site_scons/site_init.py
env=Envi ronment (t ool s=[' default', TOOL_ADD HEADER], HEADER="=====")
env. AddHeader ("tgt', 'src')

The TOOL_ADD_HEADER tool method will be called to add the AddHeader tool to the environment.

A more full-fledged tool with exi st s() and gener at e() methods can be installed either as a module in the file
site_scons/site_tool s/tool nanme. py or as a package in the directory si t e_scons/ site_t ool s/
t ool nane. In the case of using a package, the exi st s() and gener at e() are in the file si t e_scons/
site_tool s/tool nane/__init__. py.(Indltheabovecaset ool nane isreplaced by the name of thetool.)
Sincesi te_scons/ site_t ool s isautomatically added to the head of the tool search path, any tool found there
will be available to all environments. Furthermore, a tool found there will override a built-in tool of the same name,
so if you need to change the behavior of abuilt-in tool, si t e_scons givesyou the hook you need.

Many people have a collection of utility Python functions they'd like to include in their SConscr i pt files: just put
theminsite_scons/ my_utils. py or any vaid Python module name of your choice. For instance you can do
something likethisinsi te_scons/ ny_utils. pytoaddbuil d_i d and MakeWor kDi r functions:

from SCons. Script inmport * # for Execute and Mdir
def build_id():

"""Return a build ID (stub version)
return "100"

def MakeWor kDi r (wor kdi r):
"""Create the specified dir i mediately
Execut e(Mkdi r (workdir))

And then in your SConscr i pt or any sub-SConscr i pt anywhere in your build, you can import my_uti | s and
useit:

import my_utils
print("build_id=" + my_utils.build_id())
ny_utils. MakeWorkDir (" /tnp/ work')

Y ou can put thiscollection initsown moduleinasi t e_scons and import it asin the example, or you can includeit
insite_scons/site_init.py,whichisautomatically imported (unless you disable site directories). Note that
in order to refer to objects in the SCons namespace such asEnvi r onnment or Mkdi r or Execut e in any file other
than aSConst r uct or SConscri pt you aways need to do

from SCons. Scri pt inport *

Thisistrueof modulesinsit e_scons suchassite_scons/site_init. py aswell.

You can use any of the user- or machine-wide site directories such as ~/ . scons/ si t e_scons instead of . /
site_scons,orusethe--site-dir optiontopointtoyour owndirectory.site init.pyandsite tools
will be located under that directory. To avoid using asi t e_scons directory at al, even if it exists, use the - - no-
si te-dir option.

Iy
=== SCONS 128

18 Not Writing a Builder: the
Conmmand Builder

Creating a Builder and attaching it to a construction environment allows for alot of flexibility when you want to re-
use actionsto build multiplefiles of the sametype. This can, however, be cumbersomeif you only need to execute one
specific command to build a single file (or group of files). For these situations, SCons supports a Conmand builder
that arranges for a specific action to be executed to build a specific file or files. Thislooks alot like the other builders
(like Pr ogr am Qnoj ect , etc.), but takes as an additional argument the command to be executed to build the file:

env = Environnent ()
env. Command(' foo.out', 'foo.in', "sed 's/x/y/' < $SOURCE > $TARGET")
When executed, SCons runs the specified command, substituting $SOURCE and $TARGET as expected:

% scons -Q
sed 's/x/yl' < foo.in > foo.out

Thisisoften more convenient than creating aBuilder object and adding it to the $BUI LDERS variable of aconstruction
environment.

Note that the action you specify to the Comrand Builder can be any legal SCons Action, such as a Python function:

env = Environnent ()

def build(target, source, env):
Whatever it takes to build
return None

env. Command(' foo.out', 'foo.in', build)

Which executes as follows:

% scons -Q
buil d(["foo.out"], ["fo0.in"])

Note that $SOURCE and $TARGET are expanded in the source and target as well, so you can write:

env. Conmand(' ${ SOURCE. basenane}.out', 'foo.in', build)

which does the same thing as the previous example, but allows you to avoid repeating yourself.

It may be helpful to usetheact i on keyword to specify the action, is this makes things more clear to the reader:

env. Command(' ${ SOURCE. basenane}.out', 'foo.in', action=build)

The method described in Section 9.2, “ Controlling How SCons Prints Build Commands: the $* COMSTRV ariables’ for
controlling build output works well when used with pre-defined builders which have pre-defined * COVSTR variables
for that purpose, but that is not the case when calling Conmmand, where SCons has no specific knowledge of the action
ahead of time. If the action argument to Conmraind is not aready an Action object, it will construct one for you with
suitable defaults, which include a message based on the type of action. However, you can aso construct the Action
object yourself to pass to Cormand, which gives you much more control. Here's an evolution of the example from
above showing this approach:

env = Environnent ()
def build(target, source, env):

Whatever it takes to build
return None

act = Action(build, cndstr="Building ${ TARGET}")
env. Command(' foo.out', 'foo.in', action=act)
Which executes as follows:

% scons -Q
Bui | di ng f 0o. out

Iy
=== SCONS 130

19 Extending SCons:

Pseudo-Builders and the
AddMethod function

The AddMet hod function is used to add a method to an environment. It is typically used to add a "pseudo-builder,"
afunction that looks like a Builder but wraps up calls to multiple other Builders or otherwise processes its arguments
before calling one or more Builders.

In the following example, we want to install the program into the standard / usr / bi n directory hierarchy, but also
copy itintoalocal i nst al | / bi n directory from which a package might be built:

def install _in_bin_dirs(env, source):
"""Install source in both bin dirs"""
il = -env.lnstall ("$BIN', source)
i2 = env.Instal |l ("$LOCALBI N', source)
return [i1[0], i2[0]] # Return a list, like a normal builder

env = Environment (BI N='/usr/bin', LOCALBIN='"#install/bin")
env. AddMet hod(install _in_bin_dirs, "lInstalllnBinDirs")
env.InstallInBinDirs(Progran{' hello.c')) # installs hello in both bin dirs

This produces the following:

% scons -Q /

cc -o hello.o -c hello.c

cc -o hello hello.o

Install file: "hello" as "/usr/bin/hello"
Install file: "hello" as "install/bin/hello"

A pseudo-builder is useful because it gives you more flexibility parsing arguments than you can get with a standard
Builder. The next example shows a pseudo-builder with a named argument that modifies the filename, and a separate
optional argument for aresource file (rather than having the builder figure it out by file extension). This example also
demonstrates using the global AddMet hod function to add a method to the global Environment class, so it will be
available in all subsequently created environments.

def Buil dTestProg(env, testfile, resourcefile="", testdir="tests"):
"""Build the test program
Prepends "test " to src and target and puts the target into testdir.
If the build is running on Wndows, also make use of a resource file,
i f suppli ed.
srcfile = f"test _{testfile}.c"
target = f"{testdir}/test {testfile}"
if env[' PLATFORM] == 'wi n32' and resourcefile:
resfile = env. RES(resourcefile)
p = env.Progran(target, [srcfile, resfile])
el se:
p = env.Progran(target, srcfile)
return p

AddMet hod(Envi r onment, Bui | dTest Pr og)

env = Environment ()
env. Bui | dTest Prog(' stuff', resourcefile="res.rc')

This produces the following on Linux:

% scons -Q
cc -o test _stuff.o -c test_stuff.c
cc -0 tests/test stuff test _stuff.o

And the following on Windows:

C.\>scons -Q

rc /nologo /fores.res res.rc

cl /Fotest stuff.obj /c test _stuff.c /nol ogo

link /nologo /QUT:tests\test stuff.exe test stuff.obj res.res
enmbedMani f est ExeCheck(target, source, env)

Using AddMet hod is better than just adding an instance method to a construction environment because it gets called
as a proper method, and because AddMet hod provides for copying the method to any clones of the construction
environment instance.

Iy
=== SCONS 132

20 Extending SCons: Writing
Your Own Scanners

SCons has built-in Scannersthat know how to look in C/C++, Fortran, D, IDL, LaTeX, Python and SWIG source files
for information about other files that targets built from those files depend on. For example, if you have a file format
which uses#i ncl ude to specify fileswhich should be included into the source file when it is processed, you can use
an existing scanner already included in SCons. Y ou can use the same mechanisms that SCons uses to create its built-
in Scanners to write Scanners of your own for file types that SCons does not know how to scan "out of the box."

20.1. A Simple Scanner Example

Suppose, for example, that we want to create a smple Scanner for . f 0o files. A . f 0o file contains some text that
will be processed, and can include other files on lines that begin with i ncl ude followed by afile name:

i ncl ude fil enane. f oo

Scanning afile will be handled by a Python function that you must supply. Hereis afunction that will use the Python
r e moduleto scan for thei ncl ude linesin our example:

i mport re
include re = re.conpile(r'”include\s+(\S+)$', re.M

def kfile_scan(node, env, path, arg):
contents = node.get _text contents()
return env. File(include_re.findall (contents))

It isimportant to note that you have to return alist of File nodes from the scanner function, simple strings for the file
names won't do. Asin the examples we are showing here, you can usethe Fi | e function of your current construction
environment in order to create nodes on the fly from a sequence of file names with relative paths.

The scanner function must accept the four specified arguments and return alist of implicit dependencies. Presumably,
these would be dependencies found from examining the contents of the file, although the function can perform any
manipulation at all to generate the list of dependencies.

Adding a search path to a Scanner: Fi ndPat hDi r s

node
An SCons node object representing the file being scanned. The path name to the file can be used by converting
the node to a string using the st r function, or an internal SCons get _t ext _cont ent s object method can
be used to fetch the contents.

env
The construction environment in effect for this scan. The scanner function may choose to use construction
variables from this environment to affect its behavior.

pat h
A list of directories that form the search path for included files for this Scanner. This is how SCons handles the
$CPPPATHand $LI BPATH variables.

arg
An optional argument that you can choose to have passed to this scanner function by various scanner instances.

A scanner object is created using the Scanner function, which typically takesan skeys argument to associate afile
suffix with this Scanner. The scanner object must then be associated with the $SCANNERS construction variable in
the current construction environment, typically by using the Append method:

kscan = Scanner (functi on=kfile_scan, skeys=['.k'])
env. Append(SCANNERS=kscan)

When we put it all together, it looks like:

i mport re
include re = re.conpile(r'”include\s+(\S+)$', re.M

def kfile scan(node, env, path):
contents = node.get text contents()
i ncludes = include_re.findall (contents)
return env. Fil e(incl udes)

kscan = Scanner (functi on=kfile_scan, skeys=['.k'])
env = Environment (ENV={"' PATH : '/usr/local/bin'})
env. Append(SCANNERS=kscan)

env. Conmand(' foo', 'foo.k', 'kprocess < $SOURCES > $TARGET')

20.2. Adding a search path to a Scanner:
Fi ndPat hDi r s

If the build tool in question will use a path variable to search for included files or other dependencies, then the
Scanner will need to take that path variable into account as well - $CPPPATH and $L1 BPATH are used this way, for
example. The path to search is passed to your Scanner as the pat h argument. Path variables may be lists of nodes,
semicolon-separated strings, or even contain construction variables which need to be expanded. SCons provides the
Fi ndPat hDi r s function which returns a callable to expand a given path (given as a SCons construction variable
name) to alist of paths at the time the Scanner is called. Deferring evaluation until that point allows, for instance, the
path to contain $TARCGET references which differ for each file scanned.

Iy
=== SCONS 134

Using scanners with Builders

Using Fi ndPat hDi r s isquite easy. Continuing the above example, using KPATH as the construction variable with
the search path (anaogous to $CPPPATH), we just modify the call to the Scanner factory function to include a
path keyword arg:

kscan = Scanner (function=kfile _scan, skeys=['.k'], path_function=Fi ndPathDirs('KPATH))

Fi ndPat hDi r s returnsacallable object that, when called, will essentially expand the elementsinenv[' KPATH]
and tell the Scanner to search in those dirs. It will also properly add related repository and variant dirs to the search
list. As a side note, the returned method stores the path in an efficient way so lookups are fast even when variable
substitutions may be needed. Thisisimportant since many files get scanned in atypical build.

20.3. Using scanners with Builders

One approach for introducing a Scanner into the build isin conjunction with a Builder. There are two relvant optional
parameters we can use when creating aBuilder: sour ce_scanner andt ar get _scanner .sour ce_scanner
is used for scanning sourcefiles, and t ar get _scanner isused for scanning the target once it is generated.

i mport re
include_re = re.conpile(r'”include\s+(\S+)$', re.M
def kfile_scan(node, env, path, arg):
contents = node.get _text contents()
return env. Fil e(include_re.findall (contents))
kscan = Scanner (function=kfile_scan, skeys=['.k'], path_function=Fi ndPathDirs(' KPATH)
def build_function(target, source, env):

Code to build "target” from "source
return None

bl d = Bui | der (
action=bui |l d_functi on,
suffix=".foo',
sour ce_scanner =kscan,
src_suffix=".input',
)
env = Environment (BU LDERS={"' Foo' : bl d})
env. Foo('file")

An emitter function can modify thelist of sources or targets passed to the action function when the Builder istriggered.

A scanner function will not affect the list of sources or targets seen by the Builder during the build action. The scanner
function will however affect if the Builder should rebuild (if any of the files sourced by the Scanner have changed
for example).

Iy
=== SCONS 135

21 Multi-Platform

Configuration (Autoconf
Functionality)

SConshasintegrated support for build configuration similar in styleto GNU Autoconf, but designed to be transparently
multi-platform. The configuration system can help figure out if external build requirements such as system libraries
or header files are available on the build system. This section describes how to use this SCons feature. (See also the
SCons man page for additional information).

21.1. Configure Contexts

The basic framework for multi-platform build configuration in SCons is to create a configure context inside a
construction environment by calling the Conf i gur e function, perform the desired checks for libraries, functions,
header files, etc., and then call the configure context's Fi ni sh method to finish off the configuration:

env = Environnent ()

conf = Confi gure(env)

Checks for libraries, header files, etc. go here!
env = conf. Fi ni sh()

The Fi ni sh call is required; if a new context is created while a context is active, even in a different construction
environment, scons will complain and exit.

SCons provides a number of pre-defined basic checks, as well as a mechanism for adding your own custom checks.

There are afew possible strategies for failing configure checks. Some checks may be for features without which you
cannot proceed. The simple approach hereisjust to exit SCons at that point - anumber of the examplesin this chapter
are coded that way. If there are multiple hard requirements, however, it may be friendlier to the user to set aflag in
case of any fails of hard requirements and accumulate a record of them, so that on the completion of the configure
context they can all be listed prior to failing the build - as it can be frustrating to have to iterate through the setup,
fixing one new requirement each iteration. Other checks may be for features which you can do without, and here the
strategy will usually beto set a construction variable which the rest of the build can examine for its absence/presence,
or to set particular compiler flags, library lists, etc. as appropriate for the circumstances, so you can proceed with the
build appropriately based on available features.

Checking for the Existence of Header Files

Note that SCons usesits own dependency mechanism to determine when a check needs to be run--that is, SCons does
not run the checks every time it is invoked, but caches the values returned by previous checks and uses the cached
values unless something has changed. This saves a tremendous amount of developer time while working on cross-
platform build issues.

The next sections describe the basic checks that SCons supports, as well as how to add your own custom checks.

21.2. Checking for the Existence of Header
Files

Testing the existence of a header file requires knowing what language the header fileis. Thisinformation is supplied
inthel anguage keyword parameter to the CheckHeader method. Since scons grew up in aworld of C/C++ code,
aconfigure context also has a Check CHeader method that specifically checks for the existence of a C header file:

env = Envi ronnent ()
conf = Confi gure(env)
i f not conf.CheckCHeader (' math.h'):
print('Math.h nust be installed!")
Exit (1)
i f conf.CheckCHeader (' foo.h'):
conf . env. Append(CPPDEFI NES=' HAS FOO H)
env = conf. Finish()

As shown in the example, depending on the circumstances you can choose to terminate the build if a given header file
doesn't exist, or you can modify the construction environment based on the presence or absence of a header file (the
same appliesto any other check). If there are amany elements to check for, it may be friendlier for the user if you do
not terminate on the first failure, but track the problems found until the end and report on all of them, that way the user
does not have to iterate multiple times, each time finding one new dependency that needs to be installed.

If you need to check for the existence a C++ header file, use the Check CXXHeader method:

env = Environnent ()

conf = Configure(env)

i f not conf.CheckCXXHeader (' vector.h'):
print('vector.h nmust be installed!")
Exit(1)

env = conf. Fini sh()

21.3. Checking for the Availability of a Function

Check for the availability of a specific function using the Check Func method:

env = Environment ()
conf = Configure(env)
i f not conf.CheckFunc('strcpy'):
print('Did not find strcpy(), using |ocal version')
conf . env. Append(CPPDEFI NES=(" strcpy', ' ny_l ocal _strcpy'))
env = conf. Fini sh()

Iy
=== SCONS 137

Checking for the Availability of aLibrary

21.4. Checking for the Availability of a Library

Check for the availability of a library using the CheckLi b method. You only specify the base part of the library
name, you don't needtoadd al i b prefixora. aor. | i b suffix:

env = Environnent ()

conf = Confi gure(env)

i f not conf.CheckLib('m):
print('Did not find libma or mlib, exiting!")
Exit(1)

env = conf. Fi ni sh()

Because the ability to use a library successfully often depends on having access to a header file that describes the
library'sinterface, you can check for alibrary and aheader file at the sametimeby usingthe CheckLi bW t hHeader
method:

env = Environnent ()

conf = Configure(env)

i f not conf.CheckLi bWthHeader('mi, 'math.h', |anguage='c'):
print("Did not find libma or mlib, exiting!')
Exit(1)

env = conf. Fini sh()

Thisis essentially shorthand for separate callsto the CheckHeader and CheckLi b functions.

21.5. Checking for the Availability of at ypedef

Check for the availability of at ypedef by usingthe CheckType method:

env = Environment ()

conf = Confi gure(env)

i f not conf.CheckType(' off t'):
print('Did not find off _t typedef, assuming int')
conf . env. Append(CPPDEFI NES=("'of f t',"int"'))

env = conf. Fi ni sh()

Y ou can also add a string that will be placed at the beginning of thetest filethat will be used to check for thet ypedef .
This provide away to specify files that must be included to find the t ypedef :

env = Environment ()

conf = Configure(env)

i f not conf.CheckType('off _t', '#include <sys/types.h>\n'):
print('Did not find off_t typedef, assuming int')
conf . env. Append(CPPDEFI NES=("'of f _t',"int"'))

env = conf. Fini sh()

Iy
=== SCONS 138

Checking the size of a datatype

21.6. Checking the size of a datatype

Check the size of a datatype by using the Check TypeSi ze method:

env = Environnent ()

conf = Confi gure(env)

int_size = conf.CheckTypeSi ze(' unsi gned int')
print('sizeof unsigned int is', int_size)

env = conf. Fi ni sh()

% scons -Q
si zeof unsigned int is 4
scons: ~.' is up to date.

21.7. Checking for the Presence of a program

Check for the presence of a program by using the Check Pr og method:

env = Environment ()

conf = Configure(env)

i f not conf.CheckProg('foobar'):
print('Unable to find the program foobar on the systeni)
Exit (1)

env = conf. Fini sh()

21.8. Extending SCons: Adding Your Own
Custom Checks

A custom check is a Python function that checks for a certain condition to exist on the running system, usually using
methods that SCons supplies to take care of the details of checking whether a compilation succeeds, alink succeeds,
aprogram isrunnable, etc. A simple custom check for the existence of a specific library might look as follows:

mylib test source file = """
#i ncl ude <nylib. h>
int main(int argc, char **argv)
{
MyLi brary nylib(argc, argv);
return O;

def CheckM/Li brary(context):

Iy
=== SCONS 139

Extending SCons. Adding Y our Own Custom Checks

cont ext . Message(' Checki ng for MLibrary...")

result = context. TryLink(nmylib test source file, '.c")
context.Result(result)

return result

TheMessage and Resul t methods should typically begin and end a custom check to let the user know what's going
on: the Message call prints the specified message (with no trailing newline) and the Resul t cal printsyes if the
check succeeds and no if it doesn't. The Tr yLi nk method actually tests for whether the specified program text will
successfully link.

(Note that acustom check can modify its check based on any argumentsyou chooseto passit, or by using or modifying
the configure context environment in the cont ext . env attribute.)

This custom check function is then attached to the configure context by passing a di